Extracurricular laboratory: Synthetic route of 1271-51-8

As the rapid development of chemical substances, we look forward to future research findings about 1271-51-8

Vinylferrocene, cas is 1271-51-8, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,1271-51-8

A solution of 4H-pyrane derivative (4, 7a and7b) (1 mmol), 4-(2-ferrocenylvinyl)benzaldehyde (2 mmol) andpiperidine (1 mL) in dry acetonitrile (10 mL) was refluxed for 1 hunder argon atmosphere. The reaction was controlled with TLCmethod by monitoring the 4-(2-ferrocenylvinyl) benzaldehyde inthe solution of reaction. After the completion of the reaction, thesolution was cooled to room temperature and the product waspurified using column chromatography over silica gel and hexane/EtOAC as eluent. Further purification was performed by recrystallizationfrom hexane and EtOAc to give corresponding compoundas a pure solid. Specific details for each compound are given belowand spectral data in each case is similar to reported one in above.2,6-Bis [4-(2-ferrocenylvinyl)styryl]-4H-pyran-4-one (6):from 0.1 g (0.32 mmol) 4-(2-Ferrocenylvinyl) benzaldehyde and0.02 g (0.11 mmol) 2, 6-Methyl-4H-pyran-4-one, 0.08 g (0.13 mmol)orange solid was obtained in 75percent yield.

As the rapid development of chemical substances, we look forward to future research findings about 1271-51-8

Reference£º
Article; Teimuri-Mofrad, Reza; Rahimpour, Keshvar; Ghadari, Rahim; Journal of Organometallic Chemistry; vol. 846; (2017); p. 397 – 406;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Extracurricular laboratory: Synthetic route of 1273-86-5

As the rapid development of chemical substances, we look forward to future research findings about 1273-86-5

Ferrocenemethanol, cas is 1273-86-5, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,1273-86-5

General procedure: Method A (Table 2, entries 1,4). Into a glass 50-mL flask equipped with a stirrer, a reflux condenser,a thermometer, a bubbler for propyne supply, and a gasoutlet, alcohol 1a,b (5.0 mmol), KPO0.5O2P (0.16 g, 2.5 mmol),and DMSO (30 mL) were placed. Propyne was passed on stirring for2 h through the reaction mixture heated up to 80 C. After coolingto room temperature the reaction mixture was diluted with anaqueous 1% solution of NH4Cl (50 mL) and extracted with ether(530 mL), the extracts were washed from DMSO by water(230 mL), dried over Na2SO4. Column chromatography (basicAl2O3, eluent hexane/diethyl ether with gradient from 1:0 to 3:1) ofthe crude residue after removal of the solvent gave the pure adducts2c,d and unreacted alcohols 1a,b.

As the rapid development of chemical substances, we look forward to future research findings about 1273-86-5

Reference£º
Article; Trofimov, Boris A.; Oparina, Ludmila A.; Tarasova, Olga A.; Artem’ev, Alexander V.; Kobychev, Vladimir B.; Gatilov, Yuriy V.; Albanov, Alexander I.; Gusarova, Nina K.; Tetrahedron; vol. 70; 35; (2014); p. 5954 – 5960;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of 1271-42-7

1271-42-7, As the paragraph descriping shows that 1271-42-7 is playing an increasingly important role.

1271-42-7, Ferrocenecarboxylic acid is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a methylene chloride solution (3.6 mL) of ferrocenecarboxylic acid (manufactured by Tokyo Kasei) (237 mg),Triethylamine (102 mg) and oxalyl chloride (767 mg) were added under an argon atmosphere, and the mixture was stirred at room temperature for 5 hours. After the reaction solution was concentrated under reduced pressure, compound 3 (161 mg), 4-dimethylaminopyridine (26 mg), triethylamine (305 mg), and tetrahydrofuran (8.6 mL) were added. Stirred for hours. The reaction solution was poured into methylene chloride / water, and the organic layer was washed with saturated aqueous sodium chloride.The extract was washed with a solution, dried over sodium sulfate, and then concentrated under reduced pressure. Silica gel concentrated residuePurified by column chromatography (developing solvent: ethyl acetate / hexane = 1/5) and obtained crude productIs purified by size exclusion chromatography and washed with pentane to give the compound.Compound FcD (157 mg) was obtained.

1271-42-7, As the paragraph descriping shows that 1271-42-7 is playing an increasingly important role.

Reference£º
Patent; The University of Tokyo; Aita, Takuzo; Ito, Yoshimitsu; Toku, Yongxiang; (19 pag.)JP2019/151597; (2019); A;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 1271-42-7

The synthetic route of 1271-42-7 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1271-42-7,Ferrocenecarboxylic acid,as a common compound, the synthetic route is as follows.

Oxalyl chloride (2 mL) was added to ferrocene carboxylic acid (230 mg, 1 mmol) cooled by ice bath. 5 min after, the cooled bath was removed and the solution was stirred at room temperature for 3 h. Excess of oxalyl chloride was removed under vaccuo. Dichloromethane (4 mL) was added. The mixture obtained was added into a solution of E-4 (130 mg, 0.3 mmol) and pyridine (79 mg, 1 mmol) in dichloromethane (4 mL). The mixture was stirred for 1.5 h and poured in water (40 mL). The compound was extracted with 2 ¡Á 40 mL of dichloromethane and washed with 40 mL of water. The solution was dried over magnesium sulphate, filtered and evaporated. The crude product obtained was purified by flash chromatography with silica gel column using CH2Cl2:petroleum ether 3:1 as an eluent. E-5 was obtained as an orange solid (90 mg, 51% yield).Mp = 148 C (diethyl ether/hexane). Rf: 0.66 (diethyl ether:pentane 1:1). 1H NMR (300 MHz, CDCl3): delta 0.16 and 0.22 (s, s, 6H, 6H, 2 (CH3)2Si); 0.93 (t, 3H, J = 7.4 Hz, CH3); 0.95 and 1.00 (s, s, 6H, 6H, 2 (CH3)3Si); 2.46 (q, 2H, J = 7.4 Hz, CH2); 4.23 (s, 5H, Cp), 4.39 and 4.73 (broad s, broad s, 2H, 2H, C5H4); 6.66 and 6.83 (d, d, 2H, 2H, J = 8.5 Hz, C6H4); 6.81 and 6.97 (d, d, 2H, 2 H, J = 8.5 Hz, C6H4); 7.08 and 7.23 (d, d, 2H, 2H, J = 8.5 Hz, C6H4N). 13C NMR (75.47 MHz, CDCl3): delta -4.4 (CH3Si); 13.6 (CH3); 18.2 and 18.3 (t-BuC); 25.7 (t-Bu); 29.0 (CH2); 68.5 (2 CH, C5H4); 70.2 (Cp); 71.2 (2 CH, C5H4); 118.6, 119.6, 119.7, 130.6, 130.7, 131.6 (6CH, 3 C6H4); 135.4, 135.35, 136.7, 137.3, 139.4, 141.3, 153.8, 154.3 (8 Cq, 3 C6H4 + C=C), 168.2 (CO). IR (CH2Cl2, cm-1): 1671 (CO). MS (EI): 771.24 [M]+, 714.26 [M-tBu]+. Analyse: C45H57FeNO3Si2¡¤H2O cald.: C, 68.42; H, 7.53; N, 1.77. Found: C, 68.15; H, 7.53; N, 1.68., 1271-42-7

The synthetic route of 1271-42-7 has been constantly updated, and we look forward to future research findings.

Reference£º
Conference Paper; Dallagi, Tesnim; Saidi, Mouldi; Vessieres, Anne; Huche, Michel; Jaouen, Gerard; Top, Siden; Journal of Organometallic Chemistry; vol. 734; (2013); p. 69 – 77;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Simple exploration of 1271-42-7

1271-42-7, 1271-42-7 Ferrocenecarboxylic acid 499634, airon-catalyst compound, is more and more widely used in various fields.

1271-42-7, Ferrocenecarboxylic acid is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Following the similar procedure reported by Guimond et. al 5 To a solution of ferrocecarboxylic acid (2.300 g, 10.0 mmol) in dry CH2Cl2 (30 mL) at 0 C under N2 was added dropwise oxalyl chloride (1.14 mL, 12.0 mmol) followed by a catalytic amount of dry DMF (2 drops). The reaction was allowed to stir at rt until completion (typically 8 h). The solvent was then removed under reduced pressure to afford the corresponding crude acid chloride.

1271-42-7, 1271-42-7 Ferrocenecarboxylic acid 499634, airon-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Liu, Hua-Yu; Mou, Rui-Qi; Sun, Chuan-Zhi; Zhang, Sheng-Yan; Guo, Dian-Shun; Tetrahedron Letters; vol. 57; 42; (2016); p. 4676 – 4679;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of 1273-86-5

1273-86-5, As the paragraph descriping shows that 1273-86-5 is playing an increasingly important role.

1273-86-5, Ferrocenemethanol is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

In a Schlenk tube, 1.00 g (4.63 mmol) of ferrocenyl methanol and 0.47 mL(4.7 mmol) of 2,4 pentanedione were dissolved in 8 mL of acetonitrile at room temperature (rt). After 5 min of stirring, 0.125 g (0.23 mmol) of cerium(IV)ammonium nitrate (5% molar) were added. The reaction mixture was stirred for 30 min at rt and then evaporated under reduced pressure. The solid residue was mixed with 5 mL of water and extracted with 10 mL of dichloromethane.The organic phase was dried over MgSO4, filtered off and evaporated under reduced pressure to afford 1.25 g (4.29 mmol, 90% yield) of 1 as an orange oil.

1273-86-5, As the paragraph descriping shows that 1273-86-5 is playing an increasingly important role.

Reference£º
Article; Ahumada, Guillermo; Roisnel, Thierry; Hamon, Jean-Rene; Carrillo, David; Manzur, Carolina; Journal of the Chilean Chemical Society; vol. 58; 4; (2013); p. 1963 – 1966;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Simple exploration of 1271-51-8

1271-51-8, 1271-51-8 Vinylferrocene 16211828, airon-catalyst compound, is more and more widely used in various fields.

1271-51-8, Vinylferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A deoxygenated mixture of vinylferrocene (170mg, 0.80mmol), K2CO3 (1.50g, 11mmol), tetrabutylammonium bromide (1.19g, 3.70mmol), 6-bromochromone-3-propionic acid (196.8mg, 0.66mmol) and Pd(OAc)2 (20mg, 0.09mmol) in DMF (23ml) was heated at 95¡ãC for 19h. After cooling to r. t. the reaction mixture was evaporated to dryness. Solid residue was dissolved in chloroform and extracted six times with water followed by extraction with 3.5percent HClaq. The organic phase was dried with MgSO4, filtered and the solvent was removed from the filtrate in vacuo. The residue was subjected to chromatography on SiO2 (eluent: CHCl3/methanol, 50:5). Finally the analytically pure products were obtained after recrystallization from DMSO/water.

1271-51-8, 1271-51-8 Vinylferrocene 16211828, airon-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Kowalski, Konrad; Koceva-Chy, Aneta; Szczupak, Lukasz; Hikisz, Pawel; Bernasin?ska, Joanna; Rajnisz, Aleksandra; Solecka, Jolanta; Therrien, Bruno; Journal of Organometallic Chemistry; vol. 741-742; 1; (2013); p. 153 – 161;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Simple exploration of 1271-51-8

1271-51-8, 1271-51-8 Vinylferrocene 16211828, airon-catalyst compound, is more and more widely used in various fields.

1271-51-8, Vinylferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: A mixture of 4-bromo-7-(piperidin-1-yl)benzo[c][1,2,5]thiadiazole (2a) (0.298 g, 1 mmol), 4-vinylpyridine (0.115 g, 1.1 mmol), Pd(OAc)2 (5.0 mg, 0.022 mmol), NaOAc (0.82 g, 10 mmol), n-Bu4NBr (0.065 g, 0.2 mmol) and N,N-dimethylformamide (10 mL) was heated at 100 ¡ãC for 24 h under nitrogen atmosphere. After cooling, the reaction was quenched by adding excess water. The precipitate formed was filtered, washed with water, dissolved in dichloromethane, and dried over anhydrous sodium sulfate. After evaporation of the volatiles, the residue was purified by column chromatography on silica gel, using a hexanes/dichloromethane mixture (2:3) as eluant to obtain the title compound 3a. 4.2.6 4-((E)-2-Ferocenylvinyl)-7-((E)-2-(pyridin-4-yl)vinyl)benzo[c][1,2,5]thiadiazole (6c) Compound 6c (0.277 g, 73percent) was prepared as dark solid by following a procedure similar to that described above for 6a by using vinylferrocene. Rf (70percent CH2Cl2/hexanes) 0.39; mp 184-186 ¡ãC; numax (KBr film) 2924, 2847, 1622, 1380, 1100, 965, 810 cm-1; deltaH (500.13 MHz, CDCl3) 4.19 (5H, s, Cp), 4.40 (2H, s, Cp), 4.62 (2H, s, Cp), 7.22 (1H, s), 7.50 (2H, s), 7.61 (1H, buried d, vinyl), 7.69 (1H, d, J=6.0 Hz), 7.75 (1H, d, J=16.0 Hz, vinyl), 7.84 (1H, d, J=16.0 Hz, vinyl), 7.99 (1H, d, J=16.0 Hz, vinyl), 8.6 (2H, br s, pyridine); deltaC (125.77 MHz, CDCl3) 67.5, 69.5, 69.9, 83.0, 121.0, 121.5, 125.2, 126.8, 129.1, 129.2, 129.8, 131.2, 134.0, 145.0, 150.2, 153.7, 153.9; HRMS (ESI): MH+, found 449.0625. C25H19FeN3S requires 449.0649.

1271-51-8, 1271-51-8 Vinylferrocene 16211828, airon-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Prasad Bolisetty; Li, Chun-Ting; Thomas Justin; Bodedla, Govardhana Babu; Ho, Kuo-Chuan; Tetrahedron; vol. 71; 24; (2015); p. 4203 – 4212;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

New learning discoveries about 1271-51-8

1271-51-8, As the paragraph descriping shows that 1271-51-8 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1271-51-8,Vinylferrocene,as a common compound, the synthetic route is as follows.

General procedure: In an Schlenk tube under argon one of the following central coresC1, or C2 was mixed with 5percent palladium (II) acetate, Pd(OAc)2, 10percentTris(o-tolyl)phosphine, P(o-tol)3, and vinyl ferrocene, 1-Fc, in triethylamine/THF, 15 mL/15 mL. The resulting mixture was stirred and refluxedovernight. After removing the solvent under reduced pressure,the oil obtained was washed with distillated water and extracted inCH2Cl2 three times and dried over MgSO4. The extract was concentratedto dryness and purified by column chromatography (silica gel60) using hexane/CH2Cl2 2:1 (V/V) mixtures as eluent. The correspondingcompounds were isolated after removing the solvent in a rotaryevaporator. Compound 1. 1-Fc (187 mg, 8.84 mmol), C1 (150 mg,0.253 mmol), Pd(OAc)2 (2.8 mg, 0.0126 mmol), P(o-tol)3 (7.7 mg,0.0253 mmol), triethylamine/THF, 15 mL/15 mL. Yield 49.5percent. IR wavenumber(KBr): =1713 cm?1 (eC]O), 1590 cm?1 (eC]Ce). 1HNMR (CDCl3, 400 MHz): delta=4.10 (15H, pst, C5H5), 4.27 (6H,pst?C5H4), 4.44 (6H, s, ?C5H4), 6.68 (3H, d, J=16.0 Hz, ]CH), 6.89(3H, d, J=16.0 Hz, ]CH), 7.31 (6H, d, J=8.2 Hz, Harom), 7.50 (6H, d,J=8.4 Hz, Harom). 13C NMR (100.6 MHz, CDCl3): delta=67.05, 69.25,69.66, 82.76, 124.74, 126.48, 128.53, 128.60, 128.91, 131.70, 139.04.Analysis calculated for C57H45O3Fe3N3: C, 69.3; H, 4.59; N, 4.26.Found: C, 68.61; H, 4.12; N, 4.32. MP: 199 ¡ãC – 200 ¡ãC.

1271-51-8, As the paragraph descriping shows that 1271-51-8 is playing an increasingly important role.

Reference£º
Article; Santos, Juan C.; Madrid-Moline, Franco; Cisternas, Carlos A.; Paul, Frederic; Escobar, Carlos A.; Jara-Ulloa, Paola; Trujillo, Alexander; Inorganica Chimica Acta; vol. 486; (2019); p. 95 – 100;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 1271-42-7

1271-42-7, 1271-42-7 Ferrocenecarboxylic acid 499634, airon-catalyst compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1271-42-7,Ferrocenecarboxylic acid,as a common compound, the synthetic route is as follows.

Compound 15 was reacted with tert-butoxide, t-BuLi and 002 yielding compound 3a. The synthesis of ferrocenecarboxylic acid 3a (step a) was adapted from a procedure from Witte et al. (Organometallics 1999, 18, 4147). Compound 3a was reacted with oxalyl chloride under reflux yielding compound 3b. The synthesis of chlorocarbonyl ferrocene 3b (step b) was adapted from a procedure of Cormode et al. (Dalton Trans.201 0, 39, 6532). Optionally anadapted procedure of Lorkowski et. al. (VIII. Preparation of monomeric and polymeric ferrocenylene oxadiazoles, J. Prakt. Chem. 1967, 35, 149-58) may be applied. Chlorocarbonyl ferrocene 3b and 2-amino-2-hydroxymethylproprionitrile 6 were dissolved in dry THF and Triethylamine was added (step c). After evaporation of the solvent and purification by column chromatography N-(2-cyano-1-hydroxypropan-2-yl)ferroceneamide 7a was isolated in 29% yield according to an adapted procedure of Gasser et al. (J. Organomet.Chem. 2010, 695, 249-255). Compound 7a was reacted with one equivalent of 5a in thepresence of K2003 and 18-crown-6 in dry CH3CN according to an adapted procedure ofGasser et al. (J. Organomet. Chem. 2007, 692, 3835-3840) and Gasser et al. (J. Med.Chem. 2012, 55, 8790-8798), yielding compound 1 in a yield of 43%.

1271-42-7, 1271-42-7 Ferrocenecarboxylic acid 499634, airon-catalyst compound, is more and more widely used in various fields.

Reference£º
Patent; UNIVERSITAeT ZUeRICH; THE UNIVERSITY OF MELBOURNE; GASSER, Gilles; GASSER, Robin B.; HESS, Jeannine; JABBAR, Abdul; PATRA, Malay; WO2015/44396; (2015); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion