Downstream synthetic route of Vinylferrocene

With the synthetic route has been constantly updated, we look forward to future research findings about Vinylferrocene,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO371,mainly used in chemical industry, its synthesis route is as follows.,1271-51-8

A solution of 4H-pyrane derivative (4, 7a and7b) (1 mmol), 4-(2-ferrocenylvinyl)benzaldehyde (2 mmol) andpiperidine (1 mL) in dry acetonitrile (10 mL) was refluxed for 1 hunder argon atmosphere. The reaction was controlled with TLCmethod by monitoring the 4-(2-ferrocenylvinyl) benzaldehyde inthe solution of reaction. After the completion of the reaction, thesolution was cooled to room temperature and the product waspurified using column chromatography over silica gel and hexane/EtOAC as eluent. Further purification was performed by recrystallizationfrom hexane and EtOAc to give corresponding compoundas a pure solid. Specific details for each compound are given belowand spectral data in each case is similar to reported one in above.2,6-Bis [4-(2-ferrocenylvinyl)styryl]-4H-pyran-4-one (6):from 0.1 g (0.32 mmol) 4-(2-Ferrocenylvinyl) benzaldehyde and0.02 g (0.11 mmol) 2, 6-Methyl-4H-pyran-4-one, 0.08 g (0.13 mmol)orange solid was obtained in 75percent yield.

With the synthetic route has been constantly updated, we look forward to future research findings about Vinylferrocene,belong iron-catalyst compound

Reference£º
Article; Teimuri-Mofrad, Reza; Rahimpour, Keshvar; Ghadari, Rahim; Journal of Organometallic Chemistry; vol. 846; (2017); p. 397 – 406;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of Ferrocenecarboxylic acid

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenecarboxylic acid,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO388,mainly used in chemical industry, its synthesis route is as follows.,1271-42-7

To a methylene chloride solution (3.6 mL) of ferrocenecarboxylic acid (manufactured by Tokyo Kasei) (237 mg),Triethylamine (102 mg) and oxalyl chloride (767 mg) were added under an argon atmosphere, and the mixture was stirred at room temperature for 5 hours. After the reaction solution was concentrated under reduced pressure, compound 3 (161 mg), 4-dimethylaminopyridine (26 mg), triethylamine (305 mg), and tetrahydrofuran (8.6 mL) were added. Stirred for hours. The reaction solution was poured into methylene chloride / water, and the organic layer was washed with saturated aqueous sodium chloride.The extract was washed with a solution, dried over sodium sulfate, and then concentrated under reduced pressure. Silica gel concentrated residuePurified by column chromatography (developing solvent: ethyl acetate / hexane = 1/5) and obtained crude productIs purified by size exclusion chromatography and washed with pentane to give the compound.Compound FcD (157 mg) was obtained.

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenecarboxylic acid,belong iron-catalyst compound

Reference£º
Patent; The University of Tokyo; Aita, Takuzo; Ito, Yoshimitsu; Toku, Yongxiang; (19 pag.)JP2019/151597; (2019); A;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 1271-42-7

1271-42-7 Ferrocenecarboxylic acid 499634, airon-catalyst compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1271-42-7,Ferrocenecarboxylic acid,as a common compound, the synthetic route is as follows.

According to the preparation method disclosed in Aanl. Biochem., 218, 436(1994), a mixture of 1,000 mg of ferrocenecarboxylic acid(4.35 mmol) and 560 mg of N-hydroxysuccineimide(4.87 mmol) was dissolved in 40 ml of distilled 1,4-dioxane, added 100 mg of dicyclohexylcarbodiimide dissolved in 10 ml of distilled 1,4-dioxane, and stirred for 12 hours under a nitrogen atmosphere. The resulting solution was filtered and the solid thus obtained was purified by silicagel chromatography using a mixture of n-hexane and ethylacetate(1:1, Rf=0.40) as an eluent to obtain 1.39 g of the title compound as a light yellow solid (Yield: 99%). [00029] 1H NMR(CDCl3; 300 MHz) delta 2.88(4H, br s), 4.39(5H, s), 4.57(2H, m), 495(2H, m) ppm, 1271-42-7

1271-42-7 Ferrocenecarboxylic acid 499634, airon-catalyst compound, is more and more widely used in various fields.

Reference£º
Patent; Mitocon Ltd.; US6809201; (2004); B2;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 1271-55-2

With the synthetic route has been constantly updated, we look forward to future research findings about Acetylferrocene,belong iron-catalyst compound

As a common heterocyclic compound, it belong iron-catalyst compound,Acetylferrocene,1271-55-2,Molecular formula: C12H12FeO,mainly used in chemical industry, its synthesis route is as follows.,1271-55-2

General procedure: A mixture of 1.14 g (5 mmol) of acetylferrocene, 5 mmol of the corresponding aromatic aldehyde, 50 mL of ethanol, and 2.5 g (45 mmol) of potassium hydroxide was stirred for 12 h at room temperature. The mixture was poured onto ice, and the precipitate was filtered off and purified by silica gel column chromatography using methylene chloride (2, 4) or methylene chloride-hexane (19 : 1) (3) as eluent. 1-Ferrocenyl-3-(4-fluorophenyl)prop-2-en-1-one(2). Yield 85%,

With the synthetic route has been constantly updated, we look forward to future research findings about Acetylferrocene,belong iron-catalyst compound

Reference£º
Article; Antuf?eva; Zhulanov; Dmitriev; Mokrushin; Shklyaeva; Abashev; Russian Journal of General Chemistry; vol. 87; 3; (2017); p. 470 – 478; Zh. Obshch. Khim.; vol. 87; 3; (2017); p. 465 – 473,9;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Share a compound : Ferrocenecarboxylic acid

As the rapid development of chemical substances, we look forward to future research findings about 1271-42-7

Ferrocenecarboxylic acid, cas is 1271-42-7, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,1271-42-7

To a suspension of ferrocenylcarboxylic acid (60 mg, 0.26 mmol,3 equiv) in 1 mL of dry CH2Cl2 was added at room temperatureoxalyl chloride (225 mL, 2.65 mmol, 27 equiv). After 30 min at roomtemperature, the solution took a deep red color. The mixture wasconcentrated in vaccuo to remove excess oxalyl chloride. Podophyllotoxin(38 mg, 90 mmol, 1 equiv) was solubilizedequiv in1.5 mL of dry CH2Cl2 and Et3N (15 mL, 0.11 mmol, 1.2 equiv) wasadded. To this mixture was added at 0 C ferrocenoyl chloride in2 mL of CH2Cl2. Then a few crystals of DMAP were added and themixture was stirred at 0 C for 30 min and at room temperature for1 h. Reaction was quenched by addition of water, extracted withCH2Cl2 (3), washed with diluted HCl (~0.1 N), dried over MgSO4and concentrated under vacuum. The crude product was purifiedby preparative TLC on silica (AcOEt/Cyclohexane 2/3) to yield 35 mgof the desired compound as an orange powder (60%). 1H NMR(400 MHz, CDCl3): delta (ppm) 6.90 (s, 1H), 6.58 (s, 1H), 6.44 (s, 2H),6.04-5.97 (m, 3H), 4.85 (dt, J = 2.5, 1.3 Hz, 1H), 4.81 (dt, J= 2.5,1.3 Hz, 1H), 4.64 (d, J= 4.3 Hz, 1H) 4.50-4.44 (m, 3H), 4.30 (m, 1H),4.25 (s, 5H), 3.81 (s, 3H), 3.80 (s, 6H), 3.02e2.87 (m, 2H). 13C NMR(101 MHz, CDCl3): delta (ppm) 173.8, 172.6, 152.8, 148.3, 147,8, 137.4,135.1, 132.5, 129.0, 109.9, 108.4, 107.1, 101.8, 73.5, 72.1, 72.0, 71.8,70.4, 70.3, 70.0, 61.0, 56.3, 45.8, 43.9, 39.1. IR (neat, cm-1): 1780,1711, 1485, 1240, 1128. Exact mass (C33H30FeO9): calculated649.1132 (M +Na)+, measured 649.1121.

As the rapid development of chemical substances, we look forward to future research findings about 1271-42-7

Reference£º
Article; Beauperin, Matthieu; Polat, Dilan; Roudesly, Fares; Top, Siden; Vessieres, Anne; Oble, Julie; Jaouen, Gerard; Poli, Giovanni; Journal of Organometallic Chemistry; vol. 839; (2017); p. 83 – 90;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Brief introduction of 1271-42-7

1271-42-7, The synthetic route of 1271-42-7 has been constantly updated, and we look forward to future research findings.

1271-42-7, Ferrocenecarboxylic acid is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

a. Ferrocenecarboxylic acid (11.5 g, 0.05 mol) was mixed with 100 mL of dichloromethane (DCM) under ice bath and stirred well.N-hydroxysuccinimide (NHS) (7.0 g, 0.06 mol) was added to the above reaction system under vigorous stirring.1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC¡¤HCl) (11.5 g, 0.06 mol).The reaction was carried out for 4 to 6 hours in an ice bath, the solution was gradually clarified, and the reaction was monitored by TLC.After completion of the reaction, suction filtration was performed to obtain a dichloromethane solution of the intermediate (1).

1271-42-7, The synthetic route of 1271-42-7 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Shandong University; Yan Bing; Pan Xiujiao; Jiang Cuijuan; Wang Shenqing; Kong Long; Zhai Shumei; Hu Chun; Zhou Li; (17 pag.)CN109288860; (2019); A;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Simple exploration of 1273-86-5

1273-86-5, 1273-86-5 Ferrocenemethanol 10856885, airon-catalyst compound, is more and more widely used in various fields.

1273-86-5, Ferrocenemethanol is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a 10 ml Schlek reaction tube under a high-purity nitrogen atmosphere was added 0.20 mmol of benzoquinoline triphenylphosphine iridium hydrogen (16), lmmol of phenylacetylene, 2.3 mmol of ferrocene methanol, 0.8 mmol of sodium hydroxide and 3 ml of dioxane were charged. The reaction tube was replaced with nitrogen three times and then heated to 110 C with an oil bath under magnetic stirring. The reaction was refluxed for 36 hours. The filtrate was concentrated using a rotary evaporator and the remaining residue was purified by chromatography on oil (100 mL). The residue was purified by flash chromatography on silica gel eluting with an oil bath and the bath was cooled to room temperature. Ether as eluent, and separated by silica gel thin layer chromatography to obtain pure product 1-ferrocenyl-3-phenyl-1-propanone in a yield of 96%.

1273-86-5, 1273-86-5 Ferrocenemethanol 10856885, airon-catalyst compound, is more and more widely used in various fields.

Reference£º
Patent; Luoyang Normal University; Li, Xiao Dong; Li, gongmei; Xu, Chen; Hao, Xin Qi; Xiao, Zhi Qiang; (10 pag.)CN103242372; (2016); B;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Share a compound : 1273-86-5

With the rapid development of chemical substances, we look forward to future research findings about Ferrocenemethanol

Ferrocenemethanol, cas is 1273-86-5, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,1273-86-5

Acetophenone (120mg, 1mmol), cat.1 (5.4mg, 0.01mmol, 1.0mol%), cesium carbonate (33mg, 0.1mmol,0.1equiv.), Ferrocene methanol (238mg, 1.1mmol) and tert-amyl alcohol (1ml) were sequentially added to 5mL round bottom flask.After the reaction mixture was refluxed in air for six hours, cooled to room temperature. The solvent is removed by rotary evaporation, then purified by column chromatography (developingOpen solvent: petroleum ether / ethyl acetate) to give pure target compound, yield: 82%

With the rapid development of chemical substances, we look forward to future research findings about Ferrocenemethanol

Reference£º
Patent; Nanjing University of Science and Technology; Ma, Juan; Li, Lei; Li, Feng; (17 pag.)CN105439787; (2016); A;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

New learning discoveries about 1271-51-8

With the rapid development of chemical substances, we look forward to future research findings about Vinylferrocene

Vinylferrocene, cas is 1271-51-8, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,1271-51-8

General procedure: A stirred mixture of bromo compound (1.0 equiv.), Pd(OAc)2 (0.1/0.2 equiv.) in dry DMF (25mL) under nitrogen was successively treatedwith K2CO3 (3.0/6.0 equiv.) and tetrabutylammoniumbromide (0.1/0.2equiv.)and stirred for 30 min. The vinyl dendron (1.0/2.0 equiv.)wasthen added and the resulting mixture was stirred at 90 ¡ãC for 12 h,cooled and filtered. The filtrate was evaporated to dryness in vacuo.The residue was extracted with CHCl3 (3 ¡Á 100 mL), washed withwater (3 ¡Á 100 mL) and dried over anhydrous Na2SO4. Evaporation ofthe organic layer afforded the crude product,whichwas purified by columnchromatography using the eluent as mentioned under each compoundto afford the corresponding conjugated dendrimers.

With the rapid development of chemical substances, we look forward to future research findings about Vinylferrocene

Reference£º
Article; Ravivarma, Mahalingam; Kumar, Kaliamurthy Ashok; Rajakumar, Perumal; Pandurangan, Arumugam; Journal of Molecular Liquids; vol. 265; (2018); p. 717 – 726;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 1271-42-7

1271-42-7, The synthetic route of 1271-42-7 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1271-42-7,Ferrocenecarboxylic acid,as a common compound, the synthetic route is as follows.

Ferrocenecarboxylicacid 46 (500 mg, 2.2 mmol) wasstirred with oxalyl chloride (634 mg, 5.0 mmol) for 1 h. The evaporationresidue, in dry THF (5.0 mL), was added dropwise to saturated NH3 inEt2O (25 mL). After 15 min, H2O (20 mL) was added andorganic layer was washed thrice (H2O). Drying and evaporationgave ferrocenecarboxamide (370 mg, 74%) as a pale orange solid: mp 168-169C(lit.10 mp 168-171C); 1H NMR ((CD3)2SO)d 4.15 (5 H, s, Fc?-H5), 4.32 (2 H, br, Fc3,4-H2), 4.74 (2 H, br, Fc 2,5-H2), 6.91 (1 H, br, NH),7.28 (1 H, br, NH); 13C NMR ((CD3)2SO)(HSQC / HMBC) d 68.49 (Fc 2,5-C2),69.31 (Fc?-C5), 69.91 (Fc 3,4-C2), 76.42 (Fc 1-C), 171.01(C=O). This material (352 mg, 1.5 mmol) was stirred with POCl3 (3.5mL) at 120C for 2 h, followed by cooling to 0C and quench with H2O(1.0 mL). The mixture was diluted with EtOAc and washed thrice with H2O.Drying and evaporation gave 47 (360mg, 99%) as a dark orange solid: mp 105-107C (lit.11 mp 106-106.5C); 1HNMR ((CD3)2SO) d 4.34(5 H, s, Fc?-H5), 4.50 (2 H, s, Fc 3,4-H2), 4.83 (2 H, s,Fc 2,5-H2); 13C NMR ((CD3)2SO)(HSQC / HMBC) d 51.05 (Fc 1-C),70.32 (Fc?-C5), 71.00 (Fc 3,4-C2), 71.61 (Fc 2,5-C2),120.21 (CN).

1271-42-7, The synthetic route of 1271-42-7 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Paine, Helen A.; Nathubhai, Amit; Woon, Esther C.Y.; Sunderland, Peter T.; Wood, Pauline J.; Mahon, Mary F.; Lloyd, Matthew D.; Thompson, Andrew S.; Haikarainen, Teemu; Narwal, Mohit; Lehtioe, Lari; Threadgill, Michael D.; Bioorganic and Medicinal Chemistry; vol. 23; 17; (2015); p. 5891 – 5908;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion