Some tips on 1271-42-7

With the complex challenges of chemical substances, we look forward to future research findings about 1271-42-7,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Ferrocenecarboxylic acid, and cas is 1271-42-7, its synthesis route is as follows.,1271-42-7

According to the preparation method disclosed in Aanl. Biochem., 218, 436(1994), a mixture of 1,000 mg of ferrocenecarboxylic acid(4.35 mmol) and 560 mg of N-hydroxysuccineimide(4.87 mmol) was dissolved in 40 ml of distilled 1,4-dioxane, added 100 mg of dicyclohexylcarbodiimide dissolved in 10 ml of distilled 1,4-dioxane, and stirred for 12 hours under a nitrogen atmosphere. The resulting solution was filtered and the solid thus obtained was purified by silicagel chromatography using a mixture of n-hexane and ethylacetate(1:1, Rf=0.40) as an eluent to obtain 1.39 g of the title compound as a light yellow solid (Yield: 99%). [00029] 1H NMR(CDCl3; 300 MHz) delta 2.88(4H, br s), 4.39(5H, s), 4.57(2H, m), 495(2H, m) ppm

With the complex challenges of chemical substances, we look forward to future research findings about 1271-42-7,belong iron-catalyst compound

Reference£º
Patent; Mitocon Ltd.; US6809201; (2004); B2;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of Ferrocenemethanol

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenemethanol,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO235,mainly used in chemical industry, its synthesis route is as follows.,1273-86-5

General procedure: To a mixture of 1.0 mmol of ferrocenylcarbinol and 1.0 mmol of the corresponding heterocycle in 1.0 ml of methylene dichloride, 0.18 ml of 45 % aqueous solution of fluoroboric acid was added under vigorous stirring. The agitation was continued for 5 min then Et2O (15 ml), the same amount of cold water, and 5-10 mg of ascorbic acid were added to the reaction flask. After vigorous shaking of the mixture the organic solution was separated, washed with cold water (3¡Á15 ml), the solvent was removed and the residue was dried over CaCl2. All types of products (pyrrolidine as well as imidazolidine and thiazolidine derivatives) were equally purified, namely by column chromatography (silica, eluent hexane EtOAc 3:1), and solids obtained after chromatography were crystalized from ethanol.

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenemethanol,belong iron-catalyst compound

Reference£º
Article; Rogatkina, Elena Yu.; Ivanova, Anna S.; Rodionov, Alexey N.; Peregudov, Alexander S.; Korlyukov, Alexander A.; Volodin, Alexander D.; Belousov, Yury A.; Simenel, Alexander A.; Arkivoc; vol. 2018; 5; (2018); p. 272 – 282;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 1271-51-8

1271-51-8, 1271-51-8 Vinylferrocene 16211828, airon-catalyst compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1271-51-8,Vinylferrocene,as a common compound, the synthetic route is as follows.

A solution of 4H-pyrane derivative (4, 7a and7b) (1 mmol), 4-(2-ferrocenylvinyl)benzaldehyde (2 mmol) andpiperidine (1 mL) in dry acetonitrile (10 mL) was refluxed for 1 hunder argon atmosphere. The reaction was controlled with TLCmethod by monitoring the 4-(2-ferrocenylvinyl) benzaldehyde inthe solution of reaction. After the completion of the reaction, thesolution was cooled to room temperature and the product waspurified using column chromatography over silica gel and hexane/EtOAC as eluent. Further purification was performed by recrystallizationfrom hexane and EtOAc to give corresponding compoundas a pure solid. Specific details for each compound are given belowand spectral data in each case is similar to reported one in above.2,6-Bis [4-(2-ferrocenylvinyl)styryl]-4H-pyran-4-one (6):from 0.1 g (0.32 mmol) 4-(2-Ferrocenylvinyl) benzaldehyde and0.02 g (0.11 mmol) 2, 6-Methyl-4H-pyran-4-one, 0.08 g (0.13 mmol)orange solid was obtained in 75percent yield.

1271-51-8, 1271-51-8 Vinylferrocene 16211828, airon-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Teimuri-Mofrad, Reza; Rahimpour, Keshvar; Ghadari, Rahim; Journal of Organometallic Chemistry; vol. 846; (2017); p. 397 – 406;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of Vinylferrocene

With the complex challenges of chemical substances, we look forward to future research findings about Vinylferrocene,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO105,mainly used in chemical industry, its synthesis route is as follows.,1271-51-8

A deoxygenated mixture of vinylferrocene (636 mg, 3.0 mmol), K2CO3 (5.52 g, 40 mmol), tetrabutylammonium bromide (4.51 g, 14 mmol), pseudo-para dibromo-[2.2]-paracyclophane [61] (366.1 mg, 1.0 mmol) and Pd(OAc)2 (67 mg, 0.3 mmol) in DMF (43 mL) was heated at 95 ¡ãC for 20 h. After cooling to r.t. the dark reaction mixture was filtered, diluted with CH2Cl2 (~40 mL) and washed with brine (4 x 30 mL). The organic phase was dried with MgSO4, filtered and the solvent was removed from the filtrate in vacuo. The residuewas subjected to chromatography on deactivated Al2O3 (n-hexane). Two fractions containing productswere collected: a first one containing 3 (270 mg, 31percent) and a second one containing 2. Slightly impure 2was again subjected to columnchromatography on silica gel with CHCl3 followed by crystallization from a CHCl3/MeOH mixture. 2 was obtained as an orange solid in a yield of 245 mg, 39percent.

With the complex challenges of chemical substances, we look forward to future research findings about Vinylferrocene,belong iron-catalyst compound

Reference£º
Short Survey; Mu?cke, Philipp; Winter, Rainer F.; Kowalski, Konrad; Journal of Organometallic Chemistry; vol. 735; (2013); p. 10 – 14;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on Ferrocenemethanol

With the complex challenges of chemical substances, we look forward to future research findings about 1273-86-5,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Ferrocenemethanol, and cas is 1273-86-5, its synthesis route is as follows.,1273-86-5

General procedure: Under an N2 atmosphere, a mixture of secondary alcohol (0.5 mmol), primary alcohol (0.6 mmol), 1a (5 mol %), NaOH (0.1 mmol), 4 A molecular sieve (0.6 g), and toluene (1.5 mL) was added into a 25 mL Schlenk tube equipped with a stirring bar. The mixture was heated to 120 C under a slow and steady N2 flow for 24 h. After cooling to ambient temperature, 6 mL water was added and the aqueous solution extracted with ethyl acetate (3 x 5 mL). The combined extracts were dried over anhydrous Na2SO4, and concentrated under reduced pressure. The crude product purified on a short flash chromatography column.

With the complex challenges of chemical substances, we look forward to future research findings about 1273-86-5,belong iron-catalyst compound

Reference£º
Article; Zhang, Shi-Qi; Guo, Bin; Xu, Ze; Li, Hong-Xi; Li, Hai-Yan; Lang, Jian-Ping; Tetrahedron; vol. 75; 47; (2019);,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 1273-86-5

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenemethanol,belong iron-catalyst compound

As a common heterocyclic compound, it belong iron-catalyst compound,Ferrocenemethanol,1273-86-5,Molecular formula: C11H3FeO,mainly used in chemical industry, its synthesis route is as follows.,1273-86-5

General procedure: To a solution of ferrocenylcarbinol, FcCHR(OH), (1.0 mmol) and 2-thiobenzimidazole (1.0 mmol) in acetone (5.0 ml) two drops of trifluoroacetic acid were added. The reaction mixture was stirred overnight until the residue was formed. Then the residue was filtered, washed with cold ether (2 x 20 ml) and dried in vacuo over CaCl2. N-ferrocenylmethyl-2-thio-benzoimidazole (3a) Yield 74%. Yellow powder, m.p. 198-200?. Anal.: ? 60.81; ? 4.77; N 7.81; S 8.76%. Calc. for ?18?16FeN2S: ? 60.52; ? 4.80; N 7.84; S 8.98%. EI-MS, m/z (RI, %): 348 [M]+ (83). 1? NMR (CDCl3, delta, ppm): 4.11 (s, 2H, Fc); 4.25 (s, 5H, Fc); 4.49 (s, 2H, Fc); 5.28 (s, 2H, CH2); 7.15-7.22 (m, 4H, Het); 10.43 (s, 1H, SH). 13C NMR (CDCl3, delta, ppm): 51.7 (CH2), 66.3 (C5H4), 66.9 (C5H4), 69.3 (C5H4), 69.7 (C5H5), 86.9 (ipso-C5H4), 109.9 (Het, C-5), 111.7 (Het, C-6), 122.8 (Het, C-4), 123.2 (Het, C-7), 128.9 (Het, C-9), 131.0 (Het, C-8), 166.7 (C-S).

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenemethanol,belong iron-catalyst compound

Reference£º
Article; Rodionov, Alexey N.; Zherebker, Kira Ya.; Snegur, Lubov V.; Korlyukov, Alexander A.; Arhipov, Dmitry E.; Peregudov, Alexander S.; Ilyin, Mikhail M.; Nikitin, Oleg M.; Morozova, Nataliya B.; Simenel, Alexander A.; Journal of Organometallic Chemistry; vol. 783; (2015); p. 83 – 91;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 1271-42-7

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenecarboxylic acid,belong iron-catalyst compound

As a common heterocyclic compound, it belong iron-catalyst compound,Ferrocenecarboxylic acid,1271-42-7,Molecular formula: C11H10FeO2,mainly used in chemical industry, its synthesis route is as follows.,1271-42-7

Ferrocenecarboxylicacid 46 (500 mg, 2.2 mmol) wasstirred with oxalyl chloride (634 mg, 5.0 mmol) for 1 h. The evaporationresidue, in dry THF (5.0 mL), was added dropwise to saturated NH3 inEt2O (25 mL). After 15 min, H2O (20 mL) was added andorganic layer was washed thrice (H2O). Drying and evaporationgave ferrocenecarboxamide (370 mg, 74%) as a pale orange solid: mp 168-169C(lit.10 mp 168-171C); 1H NMR ((CD3)2SO)d 4.15 (5 H, s, Fc?-H5), 4.32 (2 H, br, Fc3,4-H2), 4.74 (2 H, br, Fc 2,5-H2), 6.91 (1 H, br, NH),7.28 (1 H, br, NH); 13C NMR ((CD3)2SO)(HSQC / HMBC) d 68.49 (Fc 2,5-C2),69.31 (Fc?-C5), 69.91 (Fc 3,4-C2), 76.42 (Fc 1-C), 171.01(C=O). This material (352 mg, 1.5 mmol) was stirred with POCl3 (3.5mL) at 120C for 2 h, followed by cooling to 0C and quench with H2O(1.0 mL). The mixture was diluted with EtOAc and washed thrice with H2O.Drying and evaporation gave 47 (360mg, 99%) as a dark orange solid: mp 105-107C (lit.11 mp 106-106.5C); 1HNMR ((CD3)2SO) d 4.34(5 H, s, Fc?-H5), 4.50 (2 H, s, Fc 3,4-H2), 4.83 (2 H, s,Fc 2,5-H2); 13C NMR ((CD3)2SO)(HSQC / HMBC) d 51.05 (Fc 1-C),70.32 (Fc?-C5), 71.00 (Fc 3,4-C2), 71.61 (Fc 2,5-C2),120.21 (CN).

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenecarboxylic acid,belong iron-catalyst compound

Reference£º
Article; Paine, Helen A.; Nathubhai, Amit; Woon, Esther C.Y.; Sunderland, Peter T.; Wood, Pauline J.; Mahon, Mary F.; Lloyd, Matthew D.; Thompson, Andrew S.; Haikarainen, Teemu; Narwal, Mohit; Lehtioe, Lari; Threadgill, Michael D.; Bioorganic and Medicinal Chemistry; vol. 23; 17; (2015); p. 5891 – 5908;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of 1271-42-7

As the paragraph descriping shows that 1271-42-7 is playing an increasingly important role.

1271-42-7, Ferrocenecarboxylic acid is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Ferrocene carboxylic acid (2.0 g, 8.7 mmol) were dissolved in CH3CN (5 mL) and the solution was degassed with argon. To this solution, N-hydroxysuccinimide (1.0 g, 8.7 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (1.7 g, 8.7 mmol) were added, and the solution was stirred overnight at room temperature. After the removal of the solvent, the reaction mixture was purified by silica gel column chromatography (CH2Cl2) to give 2(6.6 mmol, 76 %)., 1271-42-7

As the paragraph descriping shows that 1271-42-7 is playing an increasingly important role.

Reference£º
Article; Takada, Tadao; Tochi, Takaaki; Nakamura, Mitsunobu; Yamana, Kazushige; Bioorganic and Medicinal Chemistry Letters; vol. 24; 12; (2014); p. 2661 – 2663;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

New learning discoveries about 1273-86-5

1273-86-5, As the paragraph descriping shows that 1273-86-5 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1273-86-5,Ferrocenemethanol,as a common compound, the synthetic route is as follows.

General procedure: Under a nitrogen atmosphere, ferrocenyl methanol (216 mg, 1 mmol) and 1-methylimidazole (240 mg, 3 mmol) were dissolved in 3 mL of acetic acid and stirred for 5 h at 60 C. Volatiles were evaporated, and a solution of NH4PF6 (1.11 g, 6.2 mmol) in EtOH (5 mL) was added. After the solution had been stirred for 2 h at room temperature, the solvent was evaporated. CH2Cl2 was added to the solution, and the solution was filtered through Celite. The solvent was removed, and the residues were recrystallization from acetone/ether afforded 0.30 g (71% yield) of 1b as yellow needles. 1H NMR (600 MHz, CD3COCD3): delta (ppm) 4.08 (s, 3H, CH3), 4.26 (s, 5H, C5H5), 4.33 (s, 2H, C5H4), 4.54 (s, 2H, C5H4), 5.44 (s, 2H, CH2), 7.71 (s, 1H, CH=CH), 7.76 (s, 1H, CH=CH), 9.01 (s, 1H, NCH=N). 13C NMR (400MHz, CD3COCD3): delta (ppm) 36.92 (CH3), 50.13 (CH2), 69.56, 69.96, 70.10, 80.54 (Cp-C), 122.87, 124.54, 136.59 (imidazole-C).

1273-86-5, As the paragraph descriping shows that 1273-86-5 is playing an increasingly important role.

Reference£º
Article; Kong, Dandan; Weng, Tanqing; He, Wenxue; Liu, Bin; Jin, Shan; Hao, Xiao; Liu, Shenghua; Journal of Organometallic Chemistry; vol. 727; (2013); p. 19 – 27;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Application of 1271-51-8

As the rapid development of chemical substances, we look forward to future research findings about 1271-51-8

A common heterocyclic compound, the iron-catalyst compound, name is Vinylferrocene,cas is 1271-51-8, mainly used in chemical industry, its synthesis route is as follows.,1271-51-8

A mixture of vinylferrocene (1 mmol), K2CO3 (2.5or 5 mmol), tetrabutylammonium tetrafluoroborat (2.5 or 5 mmol),the given amount of appropriate bromine-substituted compoundand catalytic amount of Pd(OAC)2 in 10 ml DMF was stirred at 80 ¡ãCunder argon atmosphere overnight. After the completion of thereaction, the cooled mixture was filtered, diluted with CH2Cl2(50 ml) and washed with H2O (3 x 50 ml). The organic phase was dried over Na2SO4, filtered and the solvent was removed under thereduce pressure. The crude products were purified by columnchromatography on silica gel with hexane/EtOAC as eluent. Specificdetails for each compound are given below.

As the rapid development of chemical substances, we look forward to future research findings about 1271-51-8

Reference£º
Article; Teimuri-Mofrad, Reza; Rahimpour, Keshvar; Ghadari, Rahim; Journal of Organometallic Chemistry; vol. 846; (2017); p. 397 – 406;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion