Downstream synthetic route of 1271-51-8

1271-51-8, As the paragraph descriping shows that 1271-51-8 is playing an increasingly important role.

1271-51-8, Vinylferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: As shown as the synthetic protocol A in Scheme 2, compounds 1-11 were synthesized following literature description [16] with m-methoxyphenol, p-methoxyphenol, resorcinol, and hydroquinone as reagents. One hydroxyl group in resorcinol and hydroquinone was protected by tert-butyldimethylsilyl chloride. Then, 17 mL of dry CHCl3 solution containing excess PhtNSCl was added dropwisely to 8 mL of dry CHCl3 solution containing monoprotected hydroquinone or resorcinol and stirred for 16 h at 0 ¡ãC until phenols cannot be detected by thin layer chromatography (TLC). The mixture was diluted with CH2Cl2 and washed by saturated NaHCO3 and water. The organic phase was dried over anhydrous Na2SO4, and the solvent was removed under vacuum. The residue was purified by column chromatography with CH2Cl2 as the eluent to afford thiophthalimides as colorless solid. The following cycloaddition reactions were carried out in dry CHCl3 solution of thiophthalimides (~ 0.1 M) and styrenes (2 equiv.) or vinyl ferrocene (2 equiv.) and freshly distilled (C2H5)3N (2 equiv.) at 60 ¡ãC. The reaction was finished with thiophthalimides not detected by TLC. Then, the solvent was evaporated under vacuum pressure, and the residual solid was purified with column chromatography to afford silylated adducts. The desilylation operation was performed in dry tetrahydrofuran (THF) solution containing 0.04 M aforementioned adducts at 0 ¡ãC, to which a solution of (n-C4H9)4NF*3H2O in THF (1 equiv. for each protective group) was added. The reaction was finished with the reagent not detected by TLC, and then the mixture was diluted with ethyl acetate and washed with saturated NH4Cl and water. The organic layer was dried over anhydrous Na2SO4, and the solvent was evaporated under vacuum pressure. The residue was purified with column chromatography to afford thiaflavans.

1271-51-8, As the paragraph descriping shows that 1271-51-8 is playing an increasingly important role.

Reference£º
Article; Lai, Hai-Wang; Liu, Zai-Qun; European Journal of Medicinal Chemistry; vol. 81; (2014); p. 227 – 236;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of Ferrocenecarboxylic acid

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenecarboxylic acid,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO316,mainly used in chemical industry, its synthesis route is as follows.,1271-42-7

under ice-cooling, 11.5 g (0.05 mol) of ferrocenecarboxylic acid was mixed with 100 mL of dichloromethane (DCM) and homogenized with stirring. Under strong stirring, 7.0 g (0.06 mol) of N-hydroxysuccinimide was added to the above reaction system.(NHS), 11.5g (0.06mol)1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC.HCl).Under the ice bath,After 4 to 6 hours of reaction, the solution gradually clarified and the reaction was monitored by TLC. After the reaction is completed, suction filtration gives the dichloromethane of the intermediate (1).

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenecarboxylic acid,belong iron-catalyst compound

Reference£º
Patent; Shandong University; Yan Bing; Zhang Congcong; Wang Shenqing; Jiang Cuijuan; Zhai Shumei; Zhang Qiu; (16 pag.)CN107722067; (2018); A;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of 1271-55-2

With the complex challenges of chemical substances, we look forward to future research findings about Acetylferrocene

Name is Acetylferrocene, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 1271-55-2, its synthesis route is as follows.,1271-55-2

General procedure: The substituted ketone (3 mmol) and KOH(0.2 g) were dissolved in ethanol (5 mL) in a round bottomedflask and stirred at room temperature (25 C) for 10 min. Anethanolic solution of the substituted aromatic aldehyde (3 mmol,5 mL) was added drop wise and the mixture was stirred at roomtemperature. The progress of the reaction was monitored by TLCon silica gel sheets. The reaction was stopped by neutralizingthe stirred solution with 2 M HCl. In most of the cases the productwas obtained as a dark red precipitate after neutralization. It wasthen removed by filtration, washed with water. In the absence ofa precipitate on neutralization, the solution was extracted withethyl acetate (20 mL ¡Á 3). The organic layer was dried overanhydrous sodium sulphate and removed by evaporation underreduced pressure to give a liquid residue. The latter was passedthrough a column of silica gel (230-400 mesh) and eluted withTHF-hexane (1:4) to yield pure compound. All the synthesizedcompounds were well characterized by spectroscopic methodssuch as IR, NMR, Mass and elemental analysis and their spectralcharacteristics were found to be in good general agreement withthose found in literature30.

With the complex challenges of chemical substances, we look forward to future research findings about Acetylferrocene

Reference£º
Article; Mukhtar, Sayeed; Manasreh, Waleed Atef; Parveen, Humaira; Azam, Amir; Asian Journal of Chemistry; vol. 26; 24; (2014); p. 8407 – 8412;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of 1271-51-8

With the complex challenges of chemical substances, we look forward to future research findings about Vinylferrocene

Name is Vinylferrocene, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 1271-51-8, its synthesis route is as follows.,1271-51-8

Ethynylferrocene (1) (0.5 g, 2.380 mmol) was dissolved in dryethanol (35 mL) and cooled to 0 ¡ãC and subsequently treated withsolid KOH (0.340 g, 6 mmol). After 30 min of stirring at a lowtemperature solid N-iodosuccinimide (0.642 g, 2.856 mmol) wasadded to the mixture, and the stirring continued at 0 ¡ãC for additional30 min. The cold bath was then removed and the stirringcontinued at room tempreture for an additional 2 h. Aftercompletion of reaction (monitored by TLC) 100 mL of EtOAc wasadded and the mixture extracted three times with brine. Theorganic layer was separated, dried over Na2SO4, filtered, andevaporated. The productwas isolated in quantitative yield as brownSolid.Yield: 94percent (brown solid); m.p 112-115 ¡ãC (lit. 116-117 C) [47];1H NMR (500 MHz, CDCl3): delta 4.18-4.23 (m, 7H), 4.44-4.47 (m,2H) ppm; 13C NMR (75 MHz, CDCl3): delta 66.4, 69.4, 69.5, 70.6, 70.7,70.77, 70.84, 70.9, 72.5, 74.3, 92.8 ppm.

With the complex challenges of chemical substances, we look forward to future research findings about Vinylferrocene

Reference£º
Article; Yousuf, Md; Mukherjee, Debarati; Dey, Somaditya; Pal, Chiranjib; Adhikari, Susanta; European Journal of Medicinal Chemistry; vol. 124; (2016); p. 468 – 479;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on Acetylferrocene

With the complex challenges of chemical substances, we look forward to future research findings about 1271-55-2,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Acetylferrocene, and cas is 1271-55-2, its synthesis route is as follows.,1271-55-2

General procedure: The substituted ketone (3 mmol) and KOH(0.2 g) were dissolved in ethanol (5 mL) in a round bottomedflask and stirred at room temperature (25 C) for 10 min. Anethanolic solution of the substituted aromatic aldehyde (3 mmol,5 mL) was added drop wise and the mixture was stirred at roomtemperature. The progress of the reaction was monitored by TLCon silica gel sheets. The reaction was stopped by neutralizingthe stirred solution with 2 M HCl. In most of the cases the productwas obtained as a dark red precipitate after neutralization. It wasthen removed by filtration, washed with water. In the absence ofa precipitate on neutralization, the solution was extracted withethyl acetate (20 mL ¡Á 3). The organic layer was dried overanhydrous sodium sulphate and removed by evaporation underreduced pressure to give a liquid residue. The latter was passedthrough a column of silica gel (230-400 mesh) and eluted withTHF-hexane (1:4) to yield pure compound. All the synthesizedcompounds were well characterized by spectroscopic methodssuch as IR, NMR, Mass and elemental analysis and their spectralcharacteristics were found to be in good general agreement withthose found in literature30.

With the complex challenges of chemical substances, we look forward to future research findings about 1271-55-2,belong iron-catalyst compound

Reference£º
Article; Mukhtar, Sayeed; Manasreh, Waleed Atef; Parveen, Humaira; Azam, Amir; Asian Journal of Chemistry; vol. 26; 24; (2014); p. 8407 – 8412;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Extracurricular laboratory: Synthetic route of 1273-86-5

As the rapid development of chemical substances, we look forward to future research findings about 1273-86-5

Ferrocenemethanol, cas is 1273-86-5, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,1273-86-5

General procedure: Amine (1.0mmol), In(OTf)3 (0.1mmol) and anisyl alcohol (1.2mmol) were added into a flask. Then the mixture was vigorously stirred at reflux, until amine was completely consumed as indicated by TLC analysis or 24h. After the completion of reaction, CH2Cl2 (15mL¡Á2) was used to extract the product, the organic layer was dried with anhydrous Na2SO4. Then the solvent was evaporated under the reduced pressure. The residue was purified by flash column chromatography with ethyl acetate and petroleum ether as eluents to afford pure product. This procedure was followed for the synthesis of other N-benzylation amines.

As the rapid development of chemical substances, we look forward to future research findings about 1273-86-5

Reference£º
Article; Yang, Jin-Ming; Jiang, Ran; Wu, Lin; Xu, Xiao-Ping; Wang, Shun-Yi; Ji, Shun-Jun; Tetrahedron; vol. 69; 37; (2013); p. 7988 – 7994;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of 1271-51-8

With the complex challenges of chemical substances, we look forward to future research findings about Vinylferrocene

Name is Vinylferrocene, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 1271-51-8, its synthesis route is as follows.,1271-51-8

General procedure: In a 25-mL round-bottomed flask, a mixture of aryl iodide (5 mmol), alkene (6 mmol), and base (5.6 mmol) was placed in 4 mL of DMF, then a solution of the complex 3 (0.005 mol percent) in 1 mL of DMF was added. The reaction mixture was refluxed for the time stated in Tables 3 and 4 at 140 ¡ãC. The reaction mixture was poured into water (20 mL) and extracted with ether or hexane (2¡Á30 mL). The combined organic layers were dried over anhydrous sodium sulfate. After the removal of the solvent in vacuo, the resulting crude was purified by column chromatography on silica gel (hexane/ethyl acetate) to give the corresponding cross-coupling product (the purified product was identified by means of determination of mp and by 1H and 13C NMR, the data obtained are consistent with literature).26 The entire flasks used in the each coupling reaction were meticulously cleaned with aqua regia to avoid the presence of unseen palladium catalyst.

With the complex challenges of chemical substances, we look forward to future research findings about Vinylferrocene

Reference£º
Article; Sua?rez-Meneses, Jesu?s V.; Bonilla-Reyes, Edgar; Ble?-Gonza?lez, Ever A.; Ortega-Alfaro, M. Carmen; Toscano, Rube?n Alfredo; Cordero-Vargas, Alejandro; Lo?pez-Corte?s, Jose? G.; Tetrahedron; vol. 70; 7; (2014); p. 1422 – 1430;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of 1271-55-2

1271-55-2, As the paragraph descriping shows that 1271-55-2 is playing an increasingly important role.

1271-55-2, Acetylferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: The substituted ketone (3 mmol) and KOH(0.2 g) were dissolved in ethanol (5 mL) in a round bottomedflask and stirred at room temperature (25 C) for 10 min. Anethanolic solution of the substituted aromatic aldehyde (3 mmol,5 mL) was added drop wise and the mixture was stirred at roomtemperature. The progress of the reaction was monitored by TLCon silica gel sheets. The reaction was stopped by neutralizingthe stirred solution with 2 M HCl. In most of the cases the productwas obtained as a dark red precipitate after neutralization. It wasthen removed by filtration, washed with water. In the absence ofa precipitate on neutralization, the solution was extracted withethyl acetate (20 mL ¡Á 3). The organic layer was dried overanhydrous sodium sulphate and removed by evaporation underreduced pressure to give a liquid residue. The latter was passedthrough a column of silica gel (230-400 mesh) and eluted withTHF-hexane (1:4) to yield pure compound. All the synthesizedcompounds were well characterized by spectroscopic methodssuch as IR, NMR, Mass and elemental analysis and their spectralcharacteristics were found to be in good general agreement withthose found in literature30.

1271-55-2, As the paragraph descriping shows that 1271-55-2 is playing an increasingly important role.

Reference£º
Article; Mukhtar, Sayeed; Manasreh, Waleed Atef; Parveen, Humaira; Azam, Amir; Asian Journal of Chemistry; vol. 26; 24; (2014); p. 8407 – 8412;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Simple exploration of 1271-51-8

1271-51-8 Vinylferrocene 16211828, airon-catalyst compound, is more and more widely used in various fields.

1271-51-8, Vinylferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A mixture of vinylferrocene (1 mmol), K2CO3 (2.5or 5 mmol), tetrabutylammonium tetrafluoroborat (2.5 or 5 mmol),the given amount of appropriate bromine-substituted compoundand catalytic amount of Pd(OAC)2 in 10 ml DMF was stirred at 80 ¡ãCunder argon atmosphere overnight. After the completion of thereaction, the cooled mixture was filtered, diluted with CH2Cl2(50 ml) and washed with H2O (3 x 50 ml). The organic phase was dried over Na2SO4, filtered and the solvent was removed under thereduce pressure. The crude products were purified by columnchromatography on silica gel with hexane/EtOAC as eluent. Specificdetails for each compound are given below., 1271-51-8

1271-51-8 Vinylferrocene 16211828, airon-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Teimuri-Mofrad, Reza; Rahimpour, Keshvar; Ghadari, Rahim; Journal of Organometallic Chemistry; vol. 846; (2017); p. 397 – 406;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Extracurricular laboratory: Synthetic route of 1271-42-7

As the rapid development of chemical substances, we look forward to future research findings about 1271-42-7

Ferrocenecarboxylic acid, cas is 1271-42-7, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,1271-42-7

Following the similar procedure reported by Guimond et. al 5 To a solution of ferrocecarboxylic acid (2.300 g, 10.0 mmol) in dry CH2Cl2 (30 mL) at 0 C under N2 was added dropwise oxalyl chloride (1.14 mL, 12.0 mmol) followed by a catalytic amount of dry DMF (2 drops). The reaction was allowed to stir at rt until completion (typically 8 h). The solvent was then removed under reduced pressure to afford the corresponding crude acid chloride.

As the rapid development of chemical substances, we look forward to future research findings about 1271-42-7

Reference£º
Article; Liu, Hua-Yu; Mou, Rui-Qi; Sun, Chuan-Zhi; Zhang, Sheng-Yan; Guo, Dian-Shun; Tetrahedron Letters; vol. 57; 42; (2016); p. 4676 – 4679;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion