Brief introduction of 102-54-5

The synthetic route of 102-54-5 has been constantly updated, and we look forward to future research findings.

102-54-5, Ferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,102-54-5

Under a nitrogen atmosphere, ferrocene (10 g, 53.8 mmol) was dissolved in anhydrous n-hexane (50 ml), followed by adding and mixing with tetramethylethylenediamine (TMEDA, 18.1 ml, 84.5 mmol) A solution of n-butyllithium (n-BuLi) in n-hexane (2.5 M, 48.0 ml) was added slowly dropwise at 0 C., followed by stirring at 25 C. After stirring for 12 hours and removing the solvent, a light orange yellow complex was formed. The complex was added to anhydrous ethyl ether (200 ml), followed by stirring to disperse the complex in anhydrous ethyl ether and lowering the temperature of the dispersion to -78 C. A solution of iodine (19.0 g) in ethyl ether (350 ml) was added to the dispersion slowly dropwise, and the temperature was raised to 25 C. After stirring for a further hour, the reaction was poured into an aqueous ferric chloride (FeCl3) solution (5 wt %, 100 ml), followed by extraction with ethyl ether (200 ml). An organic layer thus obtained was washed ten times with an aqueous ferric chloride (FeCl3) solution (5 wt %, 100 ml) and then was washed with water until the aqueous layer was clear. Thereafter, water was removed using anhydrous MgSO4 and solvent was also removed to obtain a mixture in the form of a blackish brown liquid of compound a and compound b as shown in scheme I in a molar ratio of 1:1. (0037) The obtained mixture (2.5 g, 6.67 mmol), cuprous iodide (CuI, 128 mg, 0.67 mmol), ferric chloride (FeCl3, 107 mg, 0.67 mmol), sodium hydroxide (NaOH, 540 mg, 13.3 mmol), aqueous ammonia (15 M, 30 ml), and ethanol (EtOH, 30 ml) were placed in a high pressure reaction tube of 150 ml. A reaction was conducted at 90 C. for 12 hours. After the temperature of the content in the reaction dropped to 25 C., ethyl ether (200 ml) was added and the content in the reaction tube was washed three times with an aqueous sodium hydroxide solution (1.0 M, 150 ml). Then, water was removed using anhydrous MgSO4 and solvent was also removed to obtain an orange brown crude product, which was purified by column chromatography (eluent: ethyl acetate/n-hexane=1/2 (v/v)) to obtain aminoferrocene compound c shown in Scheme I in the form of a yellowish brown solid (yield: 48%). (0038) 1H NMR (400 MHz, CDCl3) of aminoferrocene compound c: delta 4.08 (s, 5H), 3.97 (t, J=1.6, 2H), 3.82 (t, J=1.6, 2H), 2.58 (br, 2H).

The synthetic route of 102-54-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; NATIONAL TSING HUA UNIVERSITY; Cheng, Chien-Hong; Lai, Cheng-Chang; Chang, Yu-Wei; Liao, Chuang-Yi; Huang, Min-Jie; (16 pag.)US9356244; (2016); B1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 1287-16-7

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenylacetic acid

It is a common heterocyclic compound, the iron-catalyst compound, Ferrocenylacetic acid, cas is 1287-16-7 its synthesis route is as follows.,1287-16-7

1) 1.1 mmol of ferrocenyl acetic acid and 1 mmol of 3- (4-nitrophenyl) -4-amino-5-mercapto-1,2,4-triazole were weighed out, Added to a dry 250mL single-necked flask, Then 0.11 mmol p-toluenesulfonic acid was added, To this was added 4 mL of DMF, The glass rod is stirred to dissolve it. 2)The round bottom flask was placed in a microwave reactor, 400W under irradiation once every 30s, Irradiation duration of 4min. After irradiation, cool down. 3) Pour it into a crushed beaker, With potassium carbonate and potassium hydroxide pH = 7, Placed overnight,filter,Washed,dry,The crude product of 3- (4-nitrophenyl) -6-ferrocenylmethylene-1,2,4-triazolo [3.4-b] -1,3,4-thiadiazole was obtained,Using a solvent of DMF and absolute ethanol in a volume ratio of 3: 1 mixed solvent,The crude product was recrystallized,That is, a brown solid,The yield was 84%

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenylacetic acid

Reference£º
Patent; Shaanxi University of Science and Technology; Liu, Yuting; Song, Simeng; Yin, Dawei; Jiang, Shanshan; Liu, Beibei; Yang, Aning; Wang, Jinyu; Lyu, Bo; (13 pag.)CN104231004; (2017); B;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 12093-10-6

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenecarboxaldehyde

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Ferrocenecarboxaldehyde, and cas is 12093-10-6, its synthesis route is as follows.,12093-10-6

Example 2: Synthesis of ferrocenyl chalcones 1 a-f General preparation of ferrocenyl chalcones: Ferrocene carboxaldehyde (1 eq) and the appropriate 2-hydroxyacetophenone (1 eq) were dissolved in absolute ethanol (40 mL) in a 100 mL two necked round bottom flask. After stirring the mixture 10 to 15 min. at room temperature, sodium hydroxide (3 eq) was added, and the solution was stirred overnight. The mixture was poured into water (100 mL) and hydrochloric acid (12 M, 15 mL), extracted with dichloromethane (3 x 50 mL), and washed with water. The organic phase was dried over magnesium sulfate, filtered, and the solvent removed by evaporation. The product was purified by silica gel chromatography, using a mixture of petroleum ether/dichloromethane 4:1 as an eluent, and again using HPLC in acetonitrile/water (90:10). After HPLC purification, the acetonitrile was removed under reduced pressure and the aqueous phase extracted with dichloromethane.

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenecarboxaldehyde

Reference£º
Patent; Centre National de la Recherche Scientifique (CNRS); EP2368895; (2011); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of 1287-16-7

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenylacetic acid

Name is Ferrocenylacetic acid, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 1287-16-7, its synthesis route is as follows.,1287-16-7

ALC A-1 (0.25 mmol) was dissolved in dry dichloromethane (5 mL). To this was added EDCI (2 eq., 0.5 mmol) and 2-ferrocenyl acetic acid (1.1 eq., 0.28 mmol). The reaction was stirred overnight at room temperature. The solvent was removed in vacuo and the resulting white amorphous foam. The resulting crude product was purified by column chromatography with a gradient starting at 10 % of acetone in cyclohexane (0.2% Et3N).

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenylacetic acid

Reference£º
Patent; SYNOVO GMBH; PIETRZIK, Nikolas; BURNET, Michael, W.; BAEUERLEIN, Christiane; EGGERS, Mary; GUSE, Jan-hinrich; HAHN, Ulrike; STRASS, Simon; (0 pag.)WO2018/161039; (2018); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of 1273-82-1

With the complex challenges of chemical substances, we look forward to future research findings about Aminoferrocene

Name is Aminoferrocene, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 1273-82-1, its synthesis route is as follows.,1273-82-1

(Aminoferrocenyl)(ferrocenyl)carbene(pentacarbonyl)tungsten(0) (W(CO)5(E-2)): 402 mg (2.0 mmol) of Fc-NH2 and 1132 mg (2.0 mmol) of W(CO)5(1Et) where dissolved in dryTHF (40 mL). 1595 mg (8.0 mmol) of potassium hexa methyldisilazide(KHMDS) in dry THF (40 mL) were added with in 5.5 h while stirring at room temperature. The reaction was monitored by TLC to check the reaction progress and to stopthe reaction before extensive imine formation occurs. After 8 h,the solvent was removed under reduced pressure and anaqueous saturated NaHCO3 solution (100 mL) was added.The aqueous phase was extracted with dichloromethane(3 ¡Á 100 mL) and the combined organic phases were washed with aqueous saturated NaHCO3 solution (2 ¡Á 100 mL) and brine (2 ¡Á 100 mL). The organic phase was dried over MgSO4. After evaporation of the solvent under reduced pressure, a crudered product was obtained (1.04 mg). Purification by columnchromatography (SiO2; 40 cm ¡Á 5.5 cm; petroleum ether (40/60):CH2Cl2 1:1; Rf (Fc-NH2) = 0.0, Rf (E-3) = 0.5,Rf (W(CO)5(E-2)) = 0.8) yielded 403 mg (0.56 mmol, 28%) of deep red crystalline needles. 1H NMR (CD2Cl2): delta 10.50 (s, 1H,H6), 4.73 (pt, 2H, H8), 4.71 (pt, 2H, H3), 4.62 (pt, 2H, H2),4.37 (s, 5H, H1/10), 4.33 (pt, 2H, H9), 4.32 (s, 5H, H1/10) ppm; 13C NMR (CD2Cl2) delta 259.6 (C5), 204.4 (C12), 199.3(C11,1JWC = 127 Hz), 99.7 (C7), 97.7 (C4), 72.1 (C2), 70.7(C3), 70.6 (C1/10), 70.2 (C1/10), 69.1 (C8), 67.8 (C9) ppm; MS(FD) m/z (int.): 721.0 (100, [M]+); IR (KBr) : 3335 (m, NH),3107 (s, CH), 2058 (vs, CO), 1977 (vs, CO), 1899 (br, CO),1508 (s), 1350 (m), 1238 (m), 1057 (m), 822 (m), 600 (s), 579(m), 480 (m) cm-1; IR (CH2Cl2) : 2060 (vs, CO A1), 1975 (s,CO B1), 1921 (br, CO E, A1), 1503 (m) cm-1; IR (CD2Cl2) :3439 (w, NH(W(CO)5(Z-2))), 3240 (m, NH(W(CO)5(E-2)))cm-1; UV-vis (CH2Cl2) lambdamax (epsilon): 290 sh (15370), 355 (11020),387 (11680), 468 sh (2570 M-1 cm-1) nm; CV (THF, vs FcH/FcH+): E1/2 = -2.38 V (qrev.), Ep,ox = 0.26, 0.48 V, Ep,red =0.17, -0.15, -0.76 V; Anal. calcd for C26H19Fe2NO5W (720.95): C, 43.31; H, 2.66; N, 1.94; found: C, 43.30; H, 2.69;N, 1.91.

With the complex challenges of chemical substances, we look forward to future research findings about Aminoferrocene

Reference£º
Article; Veit, Philipp; Foerster, Christoph; Heinze, Katja; Beilstein Journal of Organic Chemistry; vol. 12; (2016); p. 1322 – 1333;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 1,1′-Dibromoferrocene

With the complex challenges of chemical substances, we look forward to future research findings about 1293-65-8,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is 1,1′-Dibromoferrocene, and cas is 1293-65-8, its synthesis route is as follows.,1293-65-8

Part ( I)Preparation of 1-bromo-l’ -trimethylsilyl ferroceneTo 1, 1 ‘-dibromoferrocene (1Og, 29.08mmol) in dry THF (200ml) cooled to -780C (dry ice/acetone bath) was added n-butyllithium (11.05ml, 27.63mmol, 0.95eq) and the reaction was stirred under N2 for 30 min. Chlorotrimethylsilane (3.7ml, 29.08mmol, leq) was then added dropwise and the solution was then allowed to warm up to room temperature and further stirred for twelve hours resulting in a red solution.The reaction was then quenched with water, and stirred for a further fifteen minutes. The ethereal layer, containing product was separated and the aqueous layer was further extracted several times with diethyl ether. The combined ether fractions were dried over magnesium sulphate and filtered through celite. The ether solvent was removed by rotary evaporator (resulting in red oil) . The product was purified as the initial red band (petrol) by column chromatography. The resulting red oil was finally dried under vacuum: (7.11g, 73 % yield) .

With the complex challenges of chemical substances, we look forward to future research findings about 1293-65-8,belong iron-catalyst compound

Reference£º
Patent; LUCITE INTERNATIONAL UK LIMITED; WO2008/65448; (2008); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of Ferrocenecarboxaldehyde

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenecarboxaldehyde

Name is Ferrocenecarboxaldehyde, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 12093-10-6, its synthesis route is as follows.,12093-10-6

General procedure: To a magnetic stirred solution of acylferrocene (10 mmol) in methanol (30 mL) tosylhydrazine (10 mmol) was added. Then the mixture was stirred vigorously at 70 C. TLC analysis was performed until the spot of acylferrocene disappeared. Then the solution was cooled to room temperature, and N-tosylhydrazone precipitated. The precipitate was filtered and washed with petroleum ether (10 mL * 2) to get the pure product.

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenecarboxaldehyde

Reference£º
Article; Liu, Yueqiang; Ma, Xiaowei; Liu, Yan; Liu, Ping; Dai, Bin; Synthetic Communications; vol. 48; 8; (2018); p. 921 – 928;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on Aminoferrocene

With the complex challenges of chemical substances, we look forward to future research findings about 1273-82-1,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Aminoferrocene, and cas is 1273-82-1, its synthesis route is as follows.,1273-82-1

Aminoferrocene (0.40 g, 1.98 mmol) and acetaldehyde (0.1 mL, 1.98 mmol) were dissolved on methanol (10 mL) and refluxed for 2 h. Then, Na[B(CN)H3] (0.12 g, 1.98 mmol) dissolved in MeOH (10 mL) was slowly added. The mixture obtained was acidified with HCl (2 mL, 1 M in water) and left stirring for 30 min. Afterwards, the solvent was removed in vacuum (0.01 mbar) and the rest was mixed with triphosgene (0.59 g, 1.98 mmol) in toluene (25 mL). The suspension obtained was refluxed for 1 h, cooled down to 22C and then mixed with solution of 4-(hydroxymethyl)phenylboronic acid pinacol ester (0.46 g, 1.98 mmol) in toluene (10 mL). The resulting solution was heated to 120C and stirred at these conditions for 6 h. Then, the solvent was removed in vacuum (0.01 mbar) and the crude product was purified by column chromatography on silica gel using hexane containing 5% of acetone as eluent. Yield 0.20 g (20%). Rf= 0.5 (silica, eluent – hexane / acetone, 5/1, v/v). 1H NMR (400 MHz, acetone-d6), delta in ppm: 1.27 (t, 3H), 1.33 (s, 12H), 3.77 (q, 2H), 4.00 (s, 2H), 4.13 (s, 5H), 4.53 (m, 2H), 5.22 (s, 2H), 7.46 (d, 1 H), 7.77 (d, 2H). 13C NMR (100.55 MHz, acetone-d6), delta in ppm: 14.4, 25.3, 45.8, 62.8, 65.1, 66.9, 67.5, 69.8, 84.6, 127.8, 128.1, 135.7 (two overlapping peaks), 139.1, 141.2. FAB MS: calculated for C26H32BNO4Fe 489.2, found 489.2 m/z. C, H, N analysis: calculated for C26H32BNO4Fe – C 63.8%; H 6.6%; N 2.9%; found – C 63.8%; H 6.8%; N 2.9%. IR spectra (in KBr), wave number in cm-1: 3101, 2973, 1696, 1623.

With the complex challenges of chemical substances, we look forward to future research findings about 1273-82-1,belong iron-catalyst compound

Reference£º
Patent; Ruprecht-Karls-Universitaet Heidelberg; EP2497775; (2012); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 1287-16-7

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenylacetic acid

It is a common heterocyclic compound, the iron-catalyst compound, Ferrocenylacetic acid, cas is 1287-16-7 its synthesis route is as follows.,1287-16-7

General procedure: A mixture of ferrocene acetic acid (1 mmol), the required 3-substituted-4-amino-5-mercapto-1,2,4-triazole(1 mmol), and p-toluenesulfonic acid (0.1 mmol) in DMF(10 mL) was stirred until a homogeneous solution was obtained. The mixture was exposed to microwave irradiation for about 3 min at 350 W and then cooled and poured into crushed ice. The mixture was adjusted to pH 7 with potassium carbonate and potassium hydroxide and then kept overnight at room temperature. The crude product was filtered off, dried and recrystallized from 80% ethanol to afford the pure product (Scheme 1).

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenylacetic acid

Reference£º
Article; Liu, Yuting; Xin, Hong; Yin, Jingyi; Yin, Dawei; Transition Metal Chemistry; vol. 43; 5; (2018); p. 381 – 385;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Simple exploration of 1273-82-1

1273-82-1 Aminoferrocene 72747180, airon-catalyst compound, is more and more widely used in various fields.

1273-82-1, Aminoferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,1273-82-1

General procedure: The organometallic compounds derived from 5-nitrothiophene were prepared following the same procedure as of their 5-nitrofurane analogues [14]. Equimolar amounts of the amino compound and 5-nitro-2-thiophenecarboxaldehyde were dissolved in anhydrous benzene (20mL) and refluxed for 1h under a nitrogen atmosphere. After, the solvent was removed under vacuum and the colored solids obtained were purified by crystallization from CH2Cl2/hexane (1:5) at -18C.

1273-82-1 Aminoferrocene 72747180, airon-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Arancibia, Rodrigo; Klahn, A. Hugo; Buono-Core, Gonzalo E.; Contreras, Daniel; Barriga, German; Olea-Azar, Claudio; Lapier, Michel; Maya, Juan D.; Ibanez, Andres; Garland, Maria Teresa; Journal of Organometallic Chemistry; vol. 743; (2013); p. 49 – 54;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion