The important role of 1273-86-5

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Ferrocenemethanol, 1273-86-5

1273-86-5, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Ferrocenemethanol, cas is 1273-86-5,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

General procedure: To a mixture of 1.0 mmol of ferrocenylcarbinol and 1.0 mmol of the corresponding heterocycle in 1.0 ml of methylene dichloride, 0.18 ml of 45 % aqueous solution of fluoroboric acid was added under vigorous stirring. The agitation was continued for 5 min then Et2O (15 ml), the same amount of cold water, and 5-10 mg of ascorbic acid were added to the reaction flask. After vigorous shaking of the mixture the organic solution was separated, washed with cold water (3×15 ml), the solvent was removed and the residue was dried over CaCl2. All types of products (pyrrolidine as well as imidazolidine and thiazolidine derivatives) were equally purified, namely by column chromatography (silica, eluent hexane EtOAc 3:1), and solids obtained after chromatography were crystalized from ethanol.1-(1-Ferrocenylmethyl)pyrrolidine-2-thione (5). (85%); orange powder; mp 104.8 – 105.6o. 1H NMR (400 MHz, CDCl3) delta (ppm): 2.02 (m, 2, 2), 2.61 (m, 2, 2), 3.90 (m, 2, 2), 4.12 (s, 2H, Fc), 4.14 (s, 2, 2), 4.13 (s, 5H, Fc), 4.25 (s, 2H, Fc). 13C NMR (100 MHz, CDCl3) delta (ppm): 19.8 (CH2), 45.2 (CH2), 49.3 (CH2), 52.1 (CH), 66.0 (C5H4), 67.6 (C5H4), 68.8 (C5H4), 68.9 (C5H4), 69.1 (C5H5), 86.9 (ipso-C5H4), 200.1 (C=S) Calc. for C15H17FeNS: 61.22; H, 5.74; N, 4.69; Fe, 18.67; S, 10.72. Found: C, 60.21; H, 5.73; Fe, 18.66; N, 4.68; S, 10.72. EI/MS, m/z (RI%): 299 [M]+ (46).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Ferrocenemethanol, 1273-86-5

Reference:
Article; Rogatkina, Elena Yu.; Ivanova, Anna S.; Rodionov, Alexey N.; Peregudov, Alexander S.; Korlyukov, Alexander A.; Volodin, Alexander D.; Belousov, Yury A.; Simenel, Alexander A.; Arkivoc; vol. 2018; 5; (2018); p. 272 – 282;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 1287-16-7

The chemical industry reduces the impact on the environment during synthesis,1287-16-7,Ferrocenylacetic acid,I believe this compound will play a more active role in future production and life.

1287-16-7, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Ferrocenylacetic acid, cas is 1287-16-7,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

1) 1.1 mmol of ferrocenyl acetic acid and 1 mmol of 3- (4-nitrophenyl) -4-amino-5-mercapto-1,2,4-triazole were weighed out, Added to a dry 250mL single-necked flask, Then 0.11 mmol p-toluenesulfonic acid was added, To this was added 4 mL of DMF, The glass rod is stirred to dissolve it. 2)The round bottom flask was placed in a microwave reactor, 400W under irradiation once every 30s, Irradiation duration of 4min. After irradiation, cool down. 3) Pour it into a crushed beaker, With potassium carbonate and potassium hydroxide pH = 7, Placed overnight,filter,Washed,dry,The crude product of 3- (4-nitrophenyl) -6-ferrocenylmethylene-1,2,4-triazolo [3.4-b] -1,3,4-thiadiazole was obtained,Using a solvent of DMF and absolute ethanol in a volume ratio of 3: 1 mixed solvent,The crude product was recrystallized,That is, a brown solid,The yield was 84%

The chemical industry reduces the impact on the environment during synthesis,1287-16-7,Ferrocenylacetic acid,I believe this compound will play a more active role in future production and life.

Reference:
Patent; Shaanxi University of Science and Technology; Liu, Yuting; Song, Simeng; Yin, Dawei; Jiang, Shanshan; Liu, Beibei; Yang, Aning; Wang, Jinyu; Lyu, Bo; (13 pag.)CN104231004; (2017); B;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of 12093-10-6

12093-10-6, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,12093-10-6 ,Ferrocenecarboxaldehyde, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Ferrocenecarboxaldehyde, and cas is 12093-10-6, its synthesis route is as follows.

General procedure: O-amino amides 1a-e (1 equiv.) and carbonyl compounds 2a-o (1.2 equiv.) were microwave irradiated (standard mode) in the presence of Phosphotungstic acid/HPW (50 % w/w) at 200 W for 3 min. After the completion of the reaction (Monitored by TLC), HPW was filtered off using celite bed/Silica bed. The crude product was purified on silica gel a column chromatography to afford the corresponding spiro and cyclic quinazolinones 3a-3n, 4a-4h, and 5a, 5b in very good yields except compounds 6a and 7a were obtained in poor yields (Eluent: n-Hexane /EtOAc). All the compounds 3a-3n, 4a-4h, 5a-b, 6a and 7a were thoroughly characterized by 1H NMR, 13CNMR, FTIR and HRMS.

12093-10-6, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,12093-10-6 ,Ferrocenecarboxaldehyde, other downstream synthetic routes, hurry up and to see

Reference:
Article; Novanna, Motakatla; Kannadasan, Sathananthan; Shanmugam, Ponnusamy; Tetrahedron Letters; vol. 60; 2; (2019); p. 201 – 206;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Introduction of a new synthetic route about 102-54-5

102-54-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,102-54-5 ,Ferrocene, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Ferrocene, and cas is 102-54-5, its synthesis route is as follows.

The alcohol 1b was synthesized by acylation offerrocene (Aldrich) with acetic anhydride in presence of BF3Et2O21followed by reduction of the resulting acetylferrocene withNaBH4.22

102-54-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,102-54-5 ,Ferrocene, other downstream synthetic routes, hurry up and to see

Reference:
Article; Trofimov, Boris A.; Oparina, Ludmila A.; Tarasova, Olga A.; Artem’ev, Alexander V.; Kobychev, Vladimir B.; Gatilov, Yuriy V.; Albanov, Alexander I.; Gusarova, Nina K.; Tetrahedron; vol. 70; 35; (2014); p. 5954 – 5960;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 1273-86-5

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 1273-86-5, Ferrocenemethanol

1273-86-5, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Ferrocenemethanol, cas is 1273-86-5,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

General procedure: ferrocenemethanol was added to the substrates 1a-l in a round bottom flask and the mixture was heated under stirring at 50-90C (as reported in Table 1), the reaction was monitored by TLC and capillary electrophoresis, after completion of reaction. The reaction mixture was flash chromatographed by silica gel column to give the pure compounds 3a-l as reported in Table 1. Typical eluent: hexane/ethyl acetate= 7/3.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 1273-86-5, Ferrocenemethanol

Reference:
Article; Shisodia, Suresh Udhavrao; Auricchio, Sergio; Citterio, Attilio; Grassi, Marco; Sebastiano, Roberto; Tetrahedron Letters; vol. 55; 4; (2015); p. 869 – 872;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of Aminoferrocene

1273-82-1, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1273-82-1 ,Aminoferrocene, other downstream synthetic routes, hurry up and to see

It is a common heterocyclic compound, the iron-catalyst compound, Aminoferrocene, cas is 1273-82-1 its synthesis route is as follows.

General procedure: Organometallic sulfonamides were prepared following a modification of the procedure described by Alberto and co-workers [41]. An equimolar amount of pyridine was added at room temperature to a solution containing 50mg of P2 or P3 in 7.0mL of anhydrous CH2Cl2. After 15min, the corresponding sulfonyl chloride derivative was added, and the reaction mixture was heated under reflux for 24h. The resulting solution was dried under vacuum. The crude product was purified using silica gel liquid chromatography and a mixture of CH2Cl2/hexane (4:1) as the eluent. All compounds were recrystallized from an acetone/hexane (1:5) mixture by slow evaporation.

1273-82-1, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1273-82-1 ,Aminoferrocene, other downstream synthetic routes, hurry up and to see

Reference:
Article; Quintana, Cristobal; Silva, Gisella; Klahn, A. Hugo; Artigas, Vania; Fuentealba, Mauricio; Biot, Christophe; Halloum, Iman; Kremer, Laurent; Novoa, Nestor; Arancibia, Rodrigo; Polyhedron; vol. 134; (2017); p. 166 – 172;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Application of 1-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)ethanone

The chemical industry reduces the impact on the environment during synthesis,12093-10-6,Ferrocenecarboxaldehyde,I believe this compound will play a more active role in future production and life.

12093-10-6, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Ferrocenecarboxaldehyde, cas is 12093-10-6,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

General procedure: To a suspension of methyltriphenylphosphonium bromide (1equiv.) in dry THF (100 mL), under nitrogen atmosphere at room temperaturewas added potassium tert-butoxide (7.0 equiv.). The solutionwas stirred for 1 h and then a solution of the aldehyde (1 equiv.) indry THF (30 mL) was added slowly. The mixture was stirred at roomtemperature for 12 h andwas evaporated to dryness. The unreacted potassiumtert-butoxide was quenched with saturated NH4Cl solution(10 mL). The reaction mixture was then extracted with CHCl3(200 mL), washed with water (2 × 200 mL), brine (100 mL) and then dried over anhydrous Na2SO4. Evaporation of the organic layer gave aresidue, which was purified by column chromatography using hexaneas the eluting solvent to give the corresponding vinyl compounds.

The chemical industry reduces the impact on the environment during synthesis,12093-10-6,Ferrocenecarboxaldehyde,I believe this compound will play a more active role in future production and life.

Reference:
Article; Ravivarma, Mahalingam; Kumar, Kaliamurthy Ashok; Rajakumar, Perumal; Pandurangan, Arumugam; Journal of Molecular Liquids; vol. 265; (2018); p. 717 – 726;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 1,1′-Dibromoferrocene

1293-65-8, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1293-65-8 ,1,1′-Dibromoferrocene, other downstream synthetic routes, hurry up and to see

Name is 1,1′-Dibromoferrocene, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 1293-65-8, its synthesis route is as follows.

1,1′-Dibromoferrocene (5.1 g,14.8 mmol) was dissolved in 50 mL of thf and cooled to 100 C. nBuLi (6 mL, 14.8 mmol) was slowly added and the reaction mixture left to stir at this temperature for 45 min. Dry [ZnCl2*2thf] (4.2 g, 15.0 mmol) was added in a single portion and the resulting preparation was kept at 0 C for 30 min. Afterward, 2,5-dibromothiophene (0.83 mL, 6.45 mmol) and [Pd(CH2CMe2PtBu2)(mu-Cl)]2 (0.025 g, 36.4 mmol) were added to the solution. The reaction mixture was heated to 55 C and stirred for 36 h at this temperature. After cooling to ambient temperature, the crude product was adsorbed on alumina and purified by column chromatography on alumina, using an n-hexane/toluene mixture of ratio 4:1 (v:v) as eluent. Yield 1.60 g (43%), dark orange solid. Anal.Calcd. for C24H18Br2Fe2S (609.98): C:47.24%; H:2.98%; Found:C:47.16%; H: 2.99%. Mp: 220 C.

1293-65-8, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1293-65-8 ,1,1′-Dibromoferrocene, other downstream synthetic routes, hurry up and to see

Reference:
Article; Van Der Westhuizen, Belinda; Matthaeus Speck; Korb, Marcus; Bezuidenhout, Daniela I.; Lang, Heinrich; Journal of Organometallic Chemistry; vol. 772; (2014); p. 18 – 26;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on Ferrocene

102-54-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,102-54-5 ,Ferrocene, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Ferrocene, and cas is 102-54-5, its synthesis route is as follows.

To a solution of anhydrous AlCl3 (1.6 g, 12.0 mmol) in CH2Cl2 (20 mL) acetyl chloride (935.8 mg, 12.0 mmol) in CH2Cl2 (10 mL) was added at -5 C. The above mixture was dropwisely added to the solution of ferrocene (1.86 g, 10 mmol) and CH2Cl2 (20 mL) at 0 C and the solution color changed from orange to bluish violet. Then the reaction mixture was warmed to room temperature and stood for 2 h. The mixture was poured to ice-water and the organic phase was successively washed with 1N HCl solution, water and 5% aqueous Na2CO3. The organic layer was dried over anhydrous magnesium sulfate, filtered and the filtrate was concentrated under reduce pressure to give a crude product. The crude product was purified by recrystallization from petroleum ether (60-90 C) to give compound 7a (77.1%).

102-54-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,102-54-5 ,Ferrocene, other downstream synthetic routes, hurry up and to see

Reference:
Article; Chen, Peiqi; Liu, Chunjuan; Hu, Jianfeng; Zhang, Hao; Sun, Ranfeng; Journal of Organometallic Chemistry; vol. 854; (2018); p. 113 – 121;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

New learning discoveries about 1271-42-7

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Ferrocenecarboxylic acid, 1271-42-7

1271-42-7, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Ferrocenecarboxylic acid, cas is 1271-42-7,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

Ferrocenecarbonyl chloride was prepared in a schlenk line system to ensure moisture free environment as reported before [21]. In a typical reaction, ferrocene carboxylic acid (10.3601 g, 45.0 mmol) was firstly dried under vacuum at 50 C for 30 min and then dissolved in 75.0 mL of freshly distilled DCM. After that, pyridine(7.20 mL, 90.36 mmol) was added to the previous solution followed by the dropwise addition of oxalyl chloride (7.75 mL, 90.36 mmol) at 25 C. The reaction mixture was stirred for 30 min first at 25 C and then refluxed for 5 h. The contents of the reaction flask were evaporated under vacuum and petroleum ether (80.0 mL) was added. The mixture was stirred for 2 h at 90 C at this stage. At last, the solvent was evaporated to get the dried ferrocene monocarbonyl chloride.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Ferrocenecarboxylic acid, 1271-42-7

Reference:
Article; Khan, Amin; Wang, Li; Yu, Haojie; Haroon, Muhammad; Ullah, Raja Summe; Nazir, Ahsan; Elshaarani, Tarig; Usman, Muhammad; Fahad, Shah; Naveed, Kaleem-ur-Rehman; Journal of Organometallic Chemistry; vol. 880; (2019); p. 124 – 133;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion