Analyzing the synthesis route of 1273-86-5

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenemethanol,belong iron-catalyst compound

As a common heterocyclic compound, it belong iron-catalyst compound,Ferrocenemethanol,1273-86-5,Molecular formula: C11H3FeO,mainly used in chemical industry, its synthesis route is as follows.,1273-86-5

The cyanuric chloride (TCT)(0.184 g, 1 mmol) and 30 mL of dry tetrahydrofuran were added to a 100 mL round bottom flask,To a stirred solution of 20 mL of ferrocene methanol (0.864 g, 4 mmol) Of the dry tetrahydrofuran solution was slowly added dropwise to the reaction system.After stirring for 30 minutes under ice bath, 10 mL of a solution containing DMAP (0.366 g, 3 mmol)In a dry tetrahydrofuran solution was slowly added dropwise to the reaction system, and the mixture was stirred at room temperature for 5 minutes after stirring for 30 minutes. After the reaction was carried out at room temperature for 5 to 6 hours, the reaction was refluxed. After completion of the reaction, the reaction solution was concentrated under reduced pressure,The residue was separated by column chromatography using (V petroleum ether: V ethyl acetate, 5: 1-2: 1)The mobile phase was eluted to give nitroxyl radical containing ferrocene derivative I, 0.506 g, yield: 70%.

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenemethanol,belong iron-catalyst compound

Reference£º
Patent; Xiamen Xitu Materials Institute; Yong Jianping; Lu Canzhong; (9 pag.)CN104804047; (2017); B;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of 1273-86-5

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenemethanol

Name is Ferrocenemethanol, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 1273-86-5, its synthesis route is as follows.,1273-86-5

General procedure: A 48% aqueous solution of tetrafluoroboric acid (0.21 mL, 1.2 mmol) was added to a suspension of ferrocenyl carbinol (1 mmol) and 2mercaptobenzoxazole (1 mmol) in dichloromethane (1 mL) under vigorous stirring. The stirring was continued for 5-15 mL. Then water (10 mL) and diethyl ether (10 mL) were added to the reaction mixture. The resulting mixture was washed with water (2¡Á20 mL), the organic layer was separated and dried with Na2SO4. The solvent was removed under water pump vacuum. 3(Ferrocenylmethyl)benz[d]oxazole-2-thione (1a). Yield 72%. Yellow powder. M.p. 166.8-167.2 C. Found (%): C, 61.97; H, 4.32; N, 4.04; Fe, 15.96. Calculated (%): C, 61.91; H, 4.33; N, N, 4.01; Fe, 15.99. Rf 0.6 (petroleum ether-ethyl acetate, 3 : 1). MS, m/z (Irel(%)): 349 [M]+ (100). 1H NMR, delta: 4.18 (s, 2 H, C5H4); 4.27 (s, 5 H, C5H5); 4.48 (s, 2 H, C5H4); 5.21 (s, 2 H, CH2); 7.15 (d, 1 H, Het, J = 7.6 Hz); 7.22-7.31 (m, 2 H, Het); 7.32 (d, 1 H, Het, J = 7.6 Hz). 13C NMR, delta: 45.66 (CH2), 68.74 (C5H4), 68.96 (C5H5), 69.69 (C5H4), 80.29 (ipsoC5H4), 109.81 (Het), 110.34 (Het), 124.17 (Het), 124.75 (Het), 131.51 (Het), 147.05 (Het), 180.06 (C=S).

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenemethanol

Reference£º
Article; Osipova, E. Yu.; Ivanova; Rodionov; Korlyukov; Arkhipov; Simenel; Russian Chemical Bulletin; vol. 65; 12; (2016); p. 2868 – 2872; Izv. Akad. Nauk, Ser. Khim.; vol. 65; 12; (2016); p. 2868 – 2872,5;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of Ferrocenemethanol

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenemethanol,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO235,mainly used in chemical industry, its synthesis route is as follows.,1273-86-5

General procedure: To a mixture of 1.0 mmol of ferrocenylcarbinol and 1.0 mmol of the corresponding heterocycle in 1.0 ml of methylene dichloride, 0.18 ml of 45 % aqueous solution of fluoroboric acid was added under vigorous stirring. The agitation was continued for 5 min then Et2O (15 ml), the same amount of cold water, and 5-10 mg of ascorbic acid were added to the reaction flask. After vigorous shaking of the mixture the organic solution was separated, washed with cold water (3¡Á15 ml), the solvent was removed and the residue was dried over CaCl2. All types of products (pyrrolidine as well as imidazolidine and thiazolidine derivatives) were equally purified, namely by column chromatography (silica, eluent hexane EtOAc 3:1), and solids obtained after chromatography were crystalized from ethanol.

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenemethanol,belong iron-catalyst compound

Reference£º
Article; Rogatkina, Elena Yu.; Ivanova, Anna S.; Rodionov, Alexey N.; Peregudov, Alexander S.; Korlyukov, Alexander A.; Volodin, Alexander D.; Belousov, Yury A.; Simenel, Alexander A.; Arkivoc; vol. 2018; 5; (2018); p. 272 – 282;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on Ferrocenemethanol

With the complex challenges of chemical substances, we look forward to future research findings about 1273-86-5,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Ferrocenemethanol, and cas is 1273-86-5, its synthesis route is as follows.,1273-86-5

General procedure: Under an N2 atmosphere, a mixture of secondary alcohol (0.5 mmol), primary alcohol (0.6 mmol), 1a (5 mol %), NaOH (0.1 mmol), 4 A molecular sieve (0.6 g), and toluene (1.5 mL) was added into a 25 mL Schlenk tube equipped with a stirring bar. The mixture was heated to 120 C under a slow and steady N2 flow for 24 h. After cooling to ambient temperature, 6 mL water was added and the aqueous solution extracted with ethyl acetate (3 x 5 mL). The combined extracts were dried over anhydrous Na2SO4, and concentrated under reduced pressure. The crude product purified on a short flash chromatography column.

With the complex challenges of chemical substances, we look forward to future research findings about 1273-86-5,belong iron-catalyst compound

Reference£º
Article; Zhang, Shi-Qi; Guo, Bin; Xu, Ze; Li, Hong-Xi; Li, Hai-Yan; Lang, Jian-Ping; Tetrahedron; vol. 75; 47; (2019);,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 1273-86-5

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenemethanol,belong iron-catalyst compound

As a common heterocyclic compound, it belong iron-catalyst compound,Ferrocenemethanol,1273-86-5,Molecular formula: C11H3FeO,mainly used in chemical industry, its synthesis route is as follows.,1273-86-5

General procedure: To a solution of ferrocenylcarbinol, FcCHR(OH), (1.0 mmol) and 2-thiobenzimidazole (1.0 mmol) in acetone (5.0 ml) two drops of trifluoroacetic acid were added. The reaction mixture was stirred overnight until the residue was formed. Then the residue was filtered, washed with cold ether (2 x 20 ml) and dried in vacuo over CaCl2. N-ferrocenylmethyl-2-thio-benzoimidazole (3a) Yield 74%. Yellow powder, m.p. 198-200?. Anal.: ? 60.81; ? 4.77; N 7.81; S 8.76%. Calc. for ?18?16FeN2S: ? 60.52; ? 4.80; N 7.84; S 8.98%. EI-MS, m/z (RI, %): 348 [M]+ (83). 1? NMR (CDCl3, delta, ppm): 4.11 (s, 2H, Fc); 4.25 (s, 5H, Fc); 4.49 (s, 2H, Fc); 5.28 (s, 2H, CH2); 7.15-7.22 (m, 4H, Het); 10.43 (s, 1H, SH). 13C NMR (CDCl3, delta, ppm): 51.7 (CH2), 66.3 (C5H4), 66.9 (C5H4), 69.3 (C5H4), 69.7 (C5H5), 86.9 (ipso-C5H4), 109.9 (Het, C-5), 111.7 (Het, C-6), 122.8 (Het, C-4), 123.2 (Het, C-7), 128.9 (Het, C-9), 131.0 (Het, C-8), 166.7 (C-S).

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenemethanol,belong iron-catalyst compound

Reference£º
Article; Rodionov, Alexey N.; Zherebker, Kira Ya.; Snegur, Lubov V.; Korlyukov, Alexander A.; Arhipov, Dmitry E.; Peregudov, Alexander S.; Ilyin, Mikhail M.; Nikitin, Oleg M.; Morozova, Nataliya B.; Simenel, Alexander A.; Journal of Organometallic Chemistry; vol. 783; (2015); p. 83 – 91;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

New learning discoveries about 1273-86-5

1273-86-5, As the paragraph descriping shows that 1273-86-5 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1273-86-5,Ferrocenemethanol,as a common compound, the synthetic route is as follows.

General procedure: Under a nitrogen atmosphere, ferrocenyl methanol (216 mg, 1 mmol) and 1-methylimidazole (240 mg, 3 mmol) were dissolved in 3 mL of acetic acid and stirred for 5 h at 60 C. Volatiles were evaporated, and a solution of NH4PF6 (1.11 g, 6.2 mmol) in EtOH (5 mL) was added. After the solution had been stirred for 2 h at room temperature, the solvent was evaporated. CH2Cl2 was added to the solution, and the solution was filtered through Celite. The solvent was removed, and the residues were recrystallization from acetone/ether afforded 0.30 g (71% yield) of 1b as yellow needles. 1H NMR (600 MHz, CD3COCD3): delta (ppm) 4.08 (s, 3H, CH3), 4.26 (s, 5H, C5H5), 4.33 (s, 2H, C5H4), 4.54 (s, 2H, C5H4), 5.44 (s, 2H, CH2), 7.71 (s, 1H, CH=CH), 7.76 (s, 1H, CH=CH), 9.01 (s, 1H, NCH=N). 13C NMR (400MHz, CD3COCD3): delta (ppm) 36.92 (CH3), 50.13 (CH2), 69.56, 69.96, 70.10, 80.54 (Cp-C), 122.87, 124.54, 136.59 (imidazole-C).

1273-86-5, As the paragraph descriping shows that 1273-86-5 is playing an increasingly important role.

Reference£º
Article; Kong, Dandan; Weng, Tanqing; He, Wenxue; Liu, Bin; Jin, Shan; Hao, Xiao; Liu, Shenghua; Journal of Organometallic Chemistry; vol. 727; (2013); p. 19 – 27;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Simple exploration of 1273-86-5

1273-86-5, 1273-86-5 Ferrocenemethanol 10856885, airon-catalyst compound, is more and more widely used in various fields.

1273-86-5, Ferrocenemethanol is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a 10 ml Schlek reaction tube under a high-purity nitrogen atmosphere was added 0.20 mmol of benzoquinoline triphenylphosphine iridium hydrogen (16), lmmol of phenylacetylene, 2.3 mmol of ferrocene methanol, 0.8 mmol of sodium hydroxide and 3 ml of dioxane were charged. The reaction tube was replaced with nitrogen three times and then heated to 110 C with an oil bath under magnetic stirring. The reaction was refluxed for 36 hours. The filtrate was concentrated using a rotary evaporator and the remaining residue was purified by chromatography on oil (100 mL). The residue was purified by flash chromatography on silica gel eluting with an oil bath and the bath was cooled to room temperature. Ether as eluent, and separated by silica gel thin layer chromatography to obtain pure product 1-ferrocenyl-3-phenyl-1-propanone in a yield of 96%.

1273-86-5, 1273-86-5 Ferrocenemethanol 10856885, airon-catalyst compound, is more and more widely used in various fields.

Reference£º
Patent; Luoyang Normal University; Li, Xiao Dong; Li, gongmei; Xu, Chen; Hao, Xin Qi; Xiao, Zhi Qiang; (10 pag.)CN103242372; (2016); B;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Share a compound : 1273-86-5

With the rapid development of chemical substances, we look forward to future research findings about Ferrocenemethanol

Ferrocenemethanol, cas is 1273-86-5, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,1273-86-5

Acetophenone (120mg, 1mmol), cat.1 (5.4mg, 0.01mmol, 1.0mol%), cesium carbonate (33mg, 0.1mmol,0.1equiv.), Ferrocene methanol (238mg, 1.1mmol) and tert-amyl alcohol (1ml) were sequentially added to 5mL round bottom flask.After the reaction mixture was refluxed in air for six hours, cooled to room temperature. The solvent is removed by rotary evaporation, then purified by column chromatography (developingOpen solvent: petroleum ether / ethyl acetate) to give pure target compound, yield: 82%

With the rapid development of chemical substances, we look forward to future research findings about Ferrocenemethanol

Reference£º
Patent; Nanjing University of Science and Technology; Ma, Juan; Li, Lei; Li, Feng; (17 pag.)CN105439787; (2016); A;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

New learning discoveries about 1273-86-5

With the rapid development of chemical substances, we look forward to future research findings about Ferrocenemethanol

Ferrocenemethanol, cas is 1273-86-5, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,1273-86-5

General procedure: To a mixture of 1.0mmol of ferrocene alcohol and 1.0mmol of the corresponding nitroimidazole in 1.0ml of methylene dichloride, 0.18ml of 45% aqueous solution of fluoroboric acid was added under vigorous stirring. The agitation was continued for 5min then diethyl ether (15ml), the same amount of cold water, and 5-10mg of ascorbic acid were added to the reaction flask. After vigorous shaking of the mixture, the organic solution was separated, washed with cold water (3¡Á15ml), the solvents were removed in vacuo, and the residue was dried over CaCl2 in a desiccator.

With the rapid development of chemical substances, we look forward to future research findings about Ferrocenemethanol

Reference£º
Article; Snegur, Lubov V.; Lyapunova, Maria V.; Verina, Daria D.; Kachala, Vadim V.; Korlyukov, Alexander A.; Ilyin, Mikhail M.; Davankov, Vadim A.; Ostrovskaya, Larissa A.; Bluchterova, Natalia V.; Fomina, Margarita M.; Malkov, Victor S.; Nevskaya, Kseniya V.; Pershina, Alexandra G.; Simenel, Alexander A.; Journal of Organometallic Chemistry; vol. 871; (2018); p. 10 – 20;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of 1273-86-5

1273-86-5, As the paragraph descriping shows that 1273-86-5 is playing an increasingly important role.

1273-86-5, Ferrocenemethanol is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: To a mixture of 1.0 mmol of ferrocenylcarbinol and 1.0 mmol of the corresponding heterocycle in 1.0 ml of methylene dichloride, 0.18 ml of 45 % aqueous solution of fluoroboric acid was added under vigorous stirring. The agitation was continued for 5 min then Et2O (15 ml), the same amount of cold water, and 5-10 mg of ascorbic acid were added to the reaction flask. After vigorous shaking of the mixture the organic solution was separated, washed with cold water (3¡Á15 ml), the solvent was removed and the residue was dried over CaCl2. All types of products (pyrrolidine as well as imidazolidine and thiazolidine derivatives) were equally purified, namely by column chromatography (silica, eluent hexane EtOAc 3:1), and solids obtained after chromatography were crystalized from ethanol.1-(1-Ferrocenylmethyl)pyrrolidine-2-thione (5). (85%); orange powder; mp 104.8 – 105.6o. 1H NMR (400 MHz, CDCl3) delta (ppm): 2.02 (m, 2, 2), 2.61 (m, 2, 2), 3.90 (m, 2, 2), 4.12 (s, 2H, Fc), 4.14 (s, 2, 2), 4.13 (s, 5H, Fc), 4.25 (s, 2H, Fc). 13C NMR (100 MHz, CDCl3) delta (ppm): 19.8 (CH2), 45.2 (CH2), 49.3 (CH2), 52.1 (CH), 66.0 (C5H4), 67.6 (C5H4), 68.8 (C5H4), 68.9 (C5H4), 69.1 (C5H5), 86.9 (ipso-C5H4), 200.1 (C=S) Calc. for C15H17FeNS: 61.22; H, 5.74; N, 4.69; Fe, 18.67; S, 10.72. Found: C, 60.21; H, 5.73; Fe, 18.66; N, 4.68; S, 10.72. EI/MS, m/z (RI%): 299 [M]+ (46).

1273-86-5, As the paragraph descriping shows that 1273-86-5 is playing an increasingly important role.

Reference£º
Article; Rogatkina, Elena Yu.; Ivanova, Anna S.; Rodionov, Alexey N.; Peregudov, Alexander S.; Korlyukov, Alexander A.; Volodin, Alexander D.; Belousov, Yury A.; Simenel, Alexander A.; Arkivoc; vol. 2018; 5; (2018); p. 272 – 282;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion