Analyzing the synthesis route of 1273-86-5

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenemethanol,belong iron-catalyst compound

As a common heterocyclic compound, it belong iron-catalyst compound,Ferrocenemethanol,1273-86-5,Molecular formula: C11H3FeO,mainly used in chemical industry, its synthesis route is as follows.,1273-86-5

Ferrocenemethanol (1.3 mmol), 4-methylaniline (1 mmol), carbon-supported ruthenium nanomaterial (20 mg),Potassium hydroxide (20 mg) was added to a 25 ml reaction tube with a magnetic stirrer.After repeated nitrogen suction three times, toluene (3 ml) was added via a syringe and then sealed and reacted at 110C for 24 hours.After the reaction is completed, the catalyst is removed by filtration, and the filtrate is extracted by adding water and ethyl acetate, and the organic phases are combined.After drying, filtration, concentration under reduced pressure, and silica gel column chromatography, N-(ferrocenyl)aniline (yield 85%) was obtained.

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenemethanol,belong iron-catalyst compound

Reference£º
Patent; Soochow University (Suzhou); Li Hongxi; Guo Bin; Lang Jianping; (16 pag.)CN107954879; (2018); A;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 1273-86-5

1273-86-5, The synthetic route of 1273-86-5 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1273-86-5,Ferrocenemethanol,as a common compound, the synthetic route is as follows.

General procedure: To a solution of ferrocenyl alcohol 1 or 2 (2.0 mmol) and correspondingmercapto derivative in dry MeNO2 (5 mL) CAN (22 mg,0.04 mmol, 0.2 mol%) was added. The resulting mixture was stirredat room temperature until TLC analysis revealed complete disappearanceof starting alcohol 1 or 2 (usually 3-4 h). Then reactionmixture was poured onto a water (40 mL), organic layer was separated,the aqueous phase was extracted with EtOAc (2 10 mL),and the combined organic solution was dried over Na2SO4, filteredand the solvents were evaporated in vacuo. The remained productwas treated with CH2Cl2 (50 ml) and passed through a silica gellayer (2.5 cm) on the filter to give corresponding products 5-9,11 after the evaporation of volatiles at reduced pressure.

1273-86-5, The synthetic route of 1273-86-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Ol’shevskaya, Valentina A.; Makarenkov, Anton V.; Borisov, Yury A.; Ananyev, Ivan V.; Kononova, Elena G.; Kalinin, Valery N.; Ponomaryov, Andrey B.; Polyhedron; vol. 141; (2018); p. 181 – 190;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of Ferrocenemethanol

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenemethanol,belong iron-catalyst compound

As a common heterocyclic compound, it belong iron-catalyst compound,Ferrocenemethanol,1273-86-5,Molecular formula: C11H3FeO,mainly used in chemical industry, its synthesis route is as follows.,1273-86-5

A mixture of K2CO3 (1 mmol) and the catalyst (52 mg, ?3 mol% of Pd2+) in toluene (5 ml) was prepared in a two necked flask. The flask was evacuated and refilled with pure oxygen. To this solution, the alcohol (1 mmol, in 1 ml toluene) was injected and the resulting mixture was stirred at 80 C under an oxygen atmosphere. After completion of reaction, the reaction mixture was filtered off and the catalyst rinsed twice with CH2Cl2 (5 ml). The excess of solvent was removed under reduced pressure to give the corresponding carbonyl compounds.

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenemethanol,belong iron-catalyst compound

Reference£º
Article; Alizadeh; Khodaei; Kordestania; Beygzadeh; Journal of Molecular Catalysis A: Chemical; vol. 372; (2013); p. 167 – 174;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Extracurricular laboratory: Synthetic route of 1273-86-5

As the rapid development of chemical substances, we look forward to future research findings about 1273-86-5

Ferrocenemethanol, cas is 1273-86-5, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,1273-86-5

General procedure: Amine (1.0mmol), In(OTf)3 (0.1mmol) and anisyl alcohol (1.2mmol) were added into a flask. Then the mixture was vigorously stirred at reflux, until amine was completely consumed as indicated by TLC analysis or 24h. After the completion of reaction, CH2Cl2 (15mL¡Á2) was used to extract the product, the organic layer was dried with anhydrous Na2SO4. Then the solvent was evaporated under the reduced pressure. The residue was purified by flash column chromatography with ethyl acetate and petroleum ether as eluents to afford pure product. This procedure was followed for the synthesis of other N-benzylation amines.

As the rapid development of chemical substances, we look forward to future research findings about 1273-86-5

Reference£º
Article; Yang, Jin-Ming; Jiang, Ran; Wu, Lin; Xu, Xiao-Ping; Wang, Shun-Yi; Ji, Shun-Jun; Tetrahedron; vol. 69; 37; (2013); p. 7988 – 7994;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of 1273-86-5

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenemethanol

Name is Ferrocenemethanol, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 1273-86-5, its synthesis route is as follows.,1273-86-5

General procedure: Under a nitrogen atmosphere, ferrocenyl methanol (216 mg, 1 mmol) and 1-methylimidazole (240 mg, 3 mmol) were dissolved in 3 mL of acetic acid and stirred for 5 h at 60 C. Volatiles were evaporated, and a solution of NH4PF6 (1.11 g, 6.2 mmol) in EtOH (5 mL) was added. After the solution had been stirred for 2 h at room temperature, the solvent was evaporated. CH2Cl2 was added to the solution, and the solution was filtered through Celite. The solvent was removed, and the residues were recrystallization from acetone/ether afforded 0.30 g (71% yield) of 1b as yellow needles. 1H NMR (600 MHz, CD3COCD3): delta (ppm) 4.08 (s, 3H, CH3), 4.26 (s, 5H, C5H5), 4.33 (s, 2H, C5H4), 4.54 (s, 2H, C5H4), 5.44 (s, 2H, CH2), 7.71 (s, 1H, CH=CH), 7.76 (s, 1H, CH=CH), 9.01 (s, 1H, NCH=N). 13C NMR (400MHz, CD3COCD3): delta (ppm) 36.92 (CH3), 50.13 (CH2), 69.56, 69.96, 70.10, 80.54 (Cp-C), 122.87, 124.54, 136.59 (imidazole-C).

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenemethanol

Reference£º
Article; Kong, Dandan; Weng, Tanqing; He, Wenxue; Liu, Bin; Jin, Shan; Hao, Xiao; Liu, Shenghua; Journal of Organometallic Chemistry; vol. 727; (2013); p. 19 – 27;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Share a compound : 1273-86-5

1273-86-5 is used more and more widely, we look forward to future research findings about Ferrocenemethanol

Ferrocenemethanol, cas is 1273-86-5, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,1273-86-5

(3) Chlorinated ferrocene methane synthesis: under the protection of the helium, the ferrocene methanol (250 mg, 1 . 16 mmol) dissolved into dichloromethane (20 ml) in, then the oxalyl (6 drops, excess) into the wherein after then completing, in helium under the protection of the stirring 4 h, after the reaction, the solvent is removed by reduced pressure distillation, for fixing the residue water (10 ml) flushing.(4) Containing ferrocene group of the carbamate compound synthesis: amount taking 0. 6 Ml (1.0 mmol) is dissolved in carbon disulfide and 5 ml of ethanol, measuring the 2.4 g (1.0 mmol) di-n-octyl amine and 1.4 ml (i. the 0 1.0 mmol) triethylamine are added 1 a 50 ml three flasks; under the condition of the ice slowly dripping into carbon bisulfide ethanol solution, stirring 1 h; the removal of the ice bath, in the continuing stirring at room temperature 2 h; then adding 0.25 g (1.0 mmol) chloro ferrocene methane ethanol solution of 10 ml, to control the temperature 5 C following reaction 1 h, then raising the stirring to reflux 2 h; TLC monitoring the reaction, solvent system as developing solvent (benzene and acetone of volume ratio of 1:1); boil off ethanol, adding anhydrous ethyl ether 20 ml, filtering out the deposit, the filtrate water washing 3 times, then the molecular sieve drying, filtering, the steamed ethyl ether to obtain yellow solid, yield 82. 8%, Melting point 100 – 102 C.

1273-86-5 is used more and more widely, we look forward to future research findings about Ferrocenemethanol

Reference£º
Patent; Shandong Yuangen Petrochemical Co., Ltd.; Qiao Liang; Yuan Junzhou; Song Laigong; He Jingsong; Liu Shanshan; (7 pag.)CN104710482; (2018); B;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Share a compound : 1273-86-5

1273-86-5 is used more and more widely, we look forward to future research findings about Ferrocenemethanol

Ferrocenemethanol, cas is 1273-86-5, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,1273-86-5

General procedure: To a solution of ferrocenyl alcohol 1 or 2 (2.0 mmol) and correspondingmercapto derivative in dry MeNO2 (5 mL) CAN (22 mg,0.04 mmol, 0.2 mol%) was added. The resulting mixture was stirredat room temperature until TLC analysis revealed complete disappearanceof starting alcohol 1 or 2 (usually 3-4 h). Then reactionmixture was poured onto a water (40 mL), organic layer was separated,the aqueous phase was extracted with EtOAc (2 10 mL),and the combined organic solution was dried over Na2SO4, filteredand the solvents were evaporated in vacuo. The remained productwas treated with CH2Cl2 (50 ml) and passed through a silica gellayer (2.5 cm) on the filter to give corresponding products 5-9,11 after the evaporation of volatiles at reduced pressure.

1273-86-5 is used more and more widely, we look forward to future research findings about Ferrocenemethanol

Reference£º
Article; Ol’shevskaya, Valentina A.; Makarenkov, Anton V.; Borisov, Yury A.; Ananyev, Ivan V.; Kononova, Elena G.; Kalinin, Valery N.; Ponomaryov, Andrey B.; Polyhedron; vol. 141; (2018); p. 181 – 190;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on Ferrocenemethanol

With the complex challenges of chemical substances, we look forward to future research findings about 1273-86-5,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Ferrocenemethanol, and cas is 1273-86-5, its synthesis route is as follows.,1273-86-5

General procedure: To a solution of ferrocenyl alcohol 1 or 2 (2.0 mmol) and correspondingmercapto derivative in dry MeNO2 (5 mL) CAN (22 mg,0.04 mmol, 0.2 mol%) was added. The resulting mixture was stirredat room temperature until TLC analysis revealed complete disappearanceof starting alcohol 1 or 2 (usually 3-4 h). Then reactionmixture was poured onto a water (40 mL), organic layer was separated,the aqueous phase was extracted with EtOAc (2 10 mL),and the combined organic solution was dried over Na2SO4, filteredand the solvents were evaporated in vacuo. The remained productwas treated with CH2Cl2 (50 ml) and passed through a silica gellayer (2.5 cm) on the filter to give corresponding products 5-9,11 after the evaporation of volatiles at reduced pressure.

With the complex challenges of chemical substances, we look forward to future research findings about 1273-86-5,belong iron-catalyst compound

Reference£º
Article; Ol’shevskaya, Valentina A.; Makarenkov, Anton V.; Borisov, Yury A.; Ananyev, Ivan V.; Kononova, Elena G.; Kalinin, Valery N.; Ponomaryov, Andrey B.; Polyhedron; vol. 141; (2018); p. 181 – 190;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 1273-86-5

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenemethanol,belong iron-catalyst compound

As a common heterocyclic compound, it belong iron-catalyst compound,Ferrocenemethanol,1273-86-5,Molecular formula: C11H3FeO,mainly used in chemical industry, its synthesis route is as follows.,1273-86-5

General procedure: To a mixture of 1.0 mmol of ferrocenylcarbinol and 1.0 mmol of the corresponding heterocycle in 1.0 ml of methylene dichloride, 0.18 ml of 45% aqueous solution of fluoroboric acid was added under vigorous stirring. The agitation was continued for 5 min then Et2O (15 ml), the same amount of cold water, and 5-10 mg of ascorbic acid were added to the reaction flask. After vigorous shaking of the mixture the organic solution was separated, washed with cold water (5 15 ml), the solvent was removed and the residue was dried over CaCl2. 3-Ferrocenylmethylbenzo[d]thiazole-2(3H)-thione (5a) Yield 47%. Dark brown crystals, m.p. 134-135 C. Anal.: ? 59.27; ? 4.09; N 3.80; S 17.50%. Calc. for ?18?15FeNS2: ? 59.18; ? 4.14; N 3.83; S 17.56%. EI/MS, m/z (RI%): 365 [M]+ (78). 1? NMR (CDCl3, delta, ppm): 4.12 (s, 2H, Fc), 4.24 (s, 5H, Fc), 4.51 (s, 2H, Fc), 5.44 (s, 2H, CH2), 7.32-7.42 (m, 4H, Het). 13C NMR (CDCl3, delta, ppm): 45.5 (CH2), 68.4 (C5H4), 69.0 (C5H5), 69.9 (C5H4), 81.2 (ipso-C5H4), 112.8 (C-4, Het), 121.3 (C-7, Het), 124.7 (C-6, Het), 126.8 (C-5, Het), 127.6 (C-8, Het), 141.3 (C-9, Het), 189.1 (C=S).

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenemethanol,belong iron-catalyst compound

Reference£º
Article; Rodionov, Alexey N.; Zherebker, Kira Ya.; Snegur, Lubov V.; Korlyukov, Alexander A.; Arhipov, Dmitry E.; Peregudov, Alexander S.; Ilyin, Mikhail M.; Nikitin, Oleg M.; Morozova, Nataliya B.; Simenel, Alexander A.; Journal of Organometallic Chemistry; vol. 783; (2015); p. 83 – 91;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of Ferrocenemethanol

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenemethanol,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO476,mainly used in chemical industry, its synthesis route is as follows.,1273-86-5

General procedure: To a solution of ferrocenyl alcohol 1 or 2 (2.0 mmol) and correspondingmercapto derivative in dry MeNO2 (5 mL) CAN (22 mg,0.04 mmol, 0.2 mol%) was added. The resulting mixture was stirredat room temperature until TLC analysis revealed complete disappearanceof starting alcohol 1 or 2 (usually 3-4 h). Then reactionmixture was poured onto a water (40 mL), organic layer was separated,the aqueous phase was extracted with EtOAc (2 10 mL),and the combined organic solution was dried over Na2SO4, filteredand the solvents were evaporated in vacuo. The remained productwas treated with CH2Cl2 (50 ml) and passed through a silica gellayer (2.5 cm) on the filter to give corresponding products 5-9,11 after the evaporation of volatiles at reduced pressure.

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenemethanol,belong iron-catalyst compound

Reference£º
Article; Ol’shevskaya, Valentina A.; Makarenkov, Anton V.; Borisov, Yury A.; Ananyev, Ivan V.; Kononova, Elena G.; Kalinin, Valery N.; Ponomaryov, Andrey B.; Polyhedron; vol. 141; (2018); p. 181 – 190;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion