Some tips on 1273-86-5

1273-86-5, 1273-86-5 Ferrocenemethanol 10856885, airon-catalyst compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1273-86-5,Ferrocenemethanol,as a common compound, the synthetic route is as follows.

General procedure: To a solution of ferrocenylcarbinol, FcCHR(OH), (1.0 mmol) and 2-thiobenzimidazole (1.0 mmol) in acetone (5.0 ml) two drops of trifluoroacetic acid were added. The reaction mixture was stirred overnight until the residue was formed. Then the residue was filtered, washed with cold ether (2 x 20 ml) and dried in vacuo over CaCl2. N-ferrocenylmethyl-2-thio-benzoimidazole (3a) Yield 74%. Yellow powder, m.p. 198-200?. Anal.: ? 60.81; ? 4.77; N 7.81; S 8.76%. Calc. for ?18?16FeN2S: ? 60.52; ? 4.80; N 7.84; S 8.98%. EI-MS, m/z (RI, %): 348 [M]+ (83). 1? NMR (CDCl3, delta, ppm): 4.11 (s, 2H, Fc); 4.25 (s, 5H, Fc); 4.49 (s, 2H, Fc); 5.28 (s, 2H, CH2); 7.15-7.22 (m, 4H, Het); 10.43 (s, 1H, SH). 13C NMR (CDCl3, delta, ppm): 51.7 (CH2), 66.3 (C5H4), 66.9 (C5H4), 69.3 (C5H4), 69.7 (C5H5), 86.9 (ipso-C5H4), 109.9 (Het, C-5), 111.7 (Het, C-6), 122.8 (Het, C-4), 123.2 (Het, C-7), 128.9 (Het, C-9), 131.0 (Het, C-8), 166.7 (C-S).

1273-86-5, 1273-86-5 Ferrocenemethanol 10856885, airon-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Rodionov, Alexey N.; Zherebker, Kira Ya.; Snegur, Lubov V.; Korlyukov, Alexander A.; Arhipov, Dmitry E.; Peregudov, Alexander S.; Ilyin, Mikhail M.; Nikitin, Oleg M.; Morozova, Nataliya B.; Simenel, Alexander A.; Journal of Organometallic Chemistry; vol. 783; (2015); p. 83 – 91;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of 1273-86-5

1273-86-5, As the paragraph descriping shows that 1273-86-5 is playing an increasingly important role.

1273-86-5, Ferrocenemethanol is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: To a mixture of 1.0 mmol of ferrocenylcarbinol and 1.0 mmol of the corresponding heterocycle in 1.0 ml of methylene dichloride, 0.18 ml of 45% aqueous solution of fluoroboric acid was added under vigorous stirring. The agitation was continued for 5 min then Et2O (15 ml), the same amount of cold water, and 5-10 mg of ascorbic acid were added to the reaction flask. After vigorous shaking of the mixture the organic solution was separated, washed with cold water (5 15 ml), the solvent was removed and the residue was dried over CaCl2. 3-Ferrocenylmethylbenzo[d]thiazole-2(3H)-thione (5a) Yield 47%. Dark brown crystals, m.p. 134-135 C. Anal.: ? 59.27; ? 4.09; N 3.80; S 17.50%. Calc. for ?18?15FeNS2: ? 59.18; ? 4.14; N 3.83; S 17.56%. EI/MS, m/z (RI%): 365 [M]+ (78). 1? NMR (CDCl3, delta, ppm): 4.12 (s, 2H, Fc), 4.24 (s, 5H, Fc), 4.51 (s, 2H, Fc), 5.44 (s, 2H, CH2), 7.32-7.42 (m, 4H, Het). 13C NMR (CDCl3, delta, ppm): 45.5 (CH2), 68.4 (C5H4), 69.0 (C5H5), 69.9 (C5H4), 81.2 (ipso-C5H4), 112.8 (C-4, Het), 121.3 (C-7, Het), 124.7 (C-6, Het), 126.8 (C-5, Het), 127.6 (C-8, Het), 141.3 (C-9, Het), 189.1 (C=S).

1273-86-5, As the paragraph descriping shows that 1273-86-5 is playing an increasingly important role.

Reference£º
Article; Rodionov, Alexey N.; Zherebker, Kira Ya.; Snegur, Lubov V.; Korlyukov, Alexander A.; Arhipov, Dmitry E.; Peregudov, Alexander S.; Ilyin, Mikhail M.; Nikitin, Oleg M.; Morozova, Nataliya B.; Simenel, Alexander A.; Journal of Organometallic Chemistry; vol. 783; (2015); p. 83 – 91;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of 1273-86-5

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenemethanol

Name is Ferrocenemethanol, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 1273-86-5, its synthesis route is as follows.,1273-86-5

General procedure: To a mixture of 1.0 mmol of ferrocenylcarbinol and 1.0 mmol of the corresponding heterocycle in 1.0 ml of methylene dichloride, 0.18 ml of 45 % aqueous solution of fluoroboric acid was added under vigorous stirring. The agitation was continued for 5 min then Et2O (15 ml), the same amount of cold water, and 5-10 mg of ascorbic acid were added to the reaction flask. After vigorous shaking of the mixture the organic solution was separated, washed with cold water (3¡Á15 ml), the solvent was removed and the residue was dried over CaCl2. All types of products (pyrrolidine as well as imidazolidine and thiazolidine derivatives) were equally purified, namely by column chromatography (silica, eluent hexane EtOAc 3:1), and solids obtained after chromatography were crystalized from ethanol.1-(1-Ferrocenylmethyl)pyrrolidine-2-thione (5). (85%); orange powder; mp 104.8 – 105.6o. 1H NMR (400 MHz, CDCl3) delta (ppm): 2.02 (m, 2, 2), 2.61 (m, 2, 2), 3.90 (m, 2, 2), 4.12 (s, 2H, Fc), 4.14 (s, 2, 2), 4.13 (s, 5H, Fc), 4.25 (s, 2H, Fc). 13C NMR (100 MHz, CDCl3) delta (ppm): 19.8 (CH2), 45.2 (CH2), 49.3 (CH2), 52.1 (CH), 66.0 (C5H4), 67.6 (C5H4), 68.8 (C5H4), 68.9 (C5H4), 69.1 (C5H5), 86.9 (ipso-C5H4), 200.1 (C=S) Calc. for C15H17FeNS: 61.22; H, 5.74; N, 4.69; Fe, 18.67; S, 10.72. Found: C, 60.21; H, 5.73; Fe, 18.66; N, 4.68; S, 10.72. EI/MS, m/z (RI%): 299 [M]+ (46).

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenemethanol

Reference£º
Article; Rogatkina, Elena Yu.; Ivanova, Anna S.; Rodionov, Alexey N.; Peregudov, Alexander S.; Korlyukov, Alexander A.; Volodin, Alexander D.; Belousov, Yury A.; Simenel, Alexander A.; Arkivoc; vol. 2018; 5; (2018); p. 272 – 282;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of 1273-86-5

As the paragraph descriping shows that 1273-86-5 is playing an increasingly important role.

1273-86-5, Ferrocenemethanol is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Ferrocenemethanol (1.3 mmol), 4-methylaniline (1 mmol), carbon-supported ruthenium nanomaterial (20 mg),Potassium hydroxide (20 mg) was added to a 25 ml reaction tube with a magnetic stirrer.After repeated nitrogen suction three times, toluene (3 ml) was added via a syringe and then sealed and reacted at 110C for 24 hours.After the reaction is completed, the catalyst is removed by filtration, and the filtrate is extracted by adding water and ethyl acetate, and the organic phases are combined.After drying, filtration, concentration under reduced pressure, and silica gel column chromatography, N-(ferrocenyl)aniline (yield 85%) was obtained., 1273-86-5

As the paragraph descriping shows that 1273-86-5 is playing an increasingly important role.

Reference£º
Patent; Soochow University (Suzhou); Li Hongxi; Guo Bin; Lang Jianping; (16 pag.)CN107954879; (2018); A;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of Ferrocenemethanol

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenemethanol,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO168,mainly used in chemical industry, its synthesis route is as follows.,1273-86-5

General procedure: To a mixture of 1.0 mmol of ferrocenylcarbinol and 1.0 mmol of the corresponding heterocycle in 1.0 ml of methylene dichloride, 0.18 ml of 45 % aqueous solution of fluoroboric acid was added under vigorous stirring. The agitation was continued for 5 min then Et2O (15 ml), the same amount of cold water, and 5-10 mg of ascorbic acid were added to the reaction flask. After vigorous shaking of the mixture the organic solution was separated, washed with cold water (3¡Á15 ml), the solvent was removed and the residue was dried over CaCl2. All types of products (pyrrolidine as well as imidazolidine and thiazolidine derivatives) were equally purified, namely by column chromatography (silica, eluent hexane EtOAc 3:1), and solids obtained after chromatography were crystalized from ethanol.

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenemethanol,belong iron-catalyst compound

Reference£º
Article; Rogatkina, Elena Yu.; Ivanova, Anna S.; Rodionov, Alexey N.; Peregudov, Alexander S.; Korlyukov, Alexander A.; Volodin, Alexander D.; Belousov, Yury A.; Simenel, Alexander A.; Arkivoc; vol. 2018; 5; (2018); p. 272 – 282;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of Ferrocenemethanol

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenemethanol,belong iron-catalyst compound

As a common heterocyclic compound, it belong iron-catalyst compound,Ferrocenemethanol,1273-86-5,Molecular formula: C11H3FeO,mainly used in chemical industry, its synthesis route is as follows.,1273-86-5

General procedure: 1.1 mmol of triethylamine was added to a stirred mixture of 1.0 mmol of metallocene alcohol (7, 8, 12) or 0.45 mmol of ferrocene diol (10, 11) and 1.0 mmol of 4,5-dichloroisothiazole- or 5-arylisoxazole-3-carbonyl chloride in 50 mL of diethyl ether at 20-23C. The reaction mixture was stirred at that temperature during 24 h. The precipitated triethylamine hydrochloride was filtered off and washed with diethyl ether (5 ¡Á 10 mL). The filtrate was washed with 10 % aqueous NaCl and 5 % aqueous NaHCO3. The solvent was removed, and the residue was recrystallized from a benzene-hexane (2 : 1) mixture (14, 15, 19, and 20) or from hexane (16,17, 21, and 22). 3,4,4-Trichloro-1-cymantrenylbut-3-en-1-yl 4,5-dichloroisothiazole-3-carboxylate 18 was obtained as a viscous oil and was used without further purification.

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenemethanol,belong iron-catalyst compound

Reference£º
Article; Potkin; Dikusar; Kletskov; Petkevich; Semenova; Kolesnik; Zvereva; Zhukovskaya; Rosentsveig; Levkovskaya; Zolotar; Russian Journal of General Chemistry; vol. 86; 2; (2016); p. 338 – 343; Zh. Obshch. Khim.; vol. 86; 2; (2016); p. 338 – 343,6;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 1273-86-5

1273-86-5, 1273-86-5 Ferrocenemethanol 10856885, airon-catalyst compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1273-86-5,Ferrocenemethanol,as a common compound, the synthetic route is as follows.

To a solution of ferrocenylmethanol (1.62 g, 7.5 mmol) in dry THF (15mL), NaH (0.45 g) were added slowly at 0 C. After stirring for 0.5 h,1-bromo-4-(bromomethyl)benzene (1.88 g, 7.5 mmol) in THF (10 mL) wasadded dropwise and the reaction mixture was stirred overnight at 60 C. Thereaction mixture was quenched with saturated aq. NH4Cl (50 mL) at 0 C andextracted with CH2Cl2. The organic extracts were washed with brine, dried overanhydrous Na2SO4 and concentrated under reduced pressure. The residue waspurified by column chromatography to afford a yellow solid (2.25 g, 78%). 1HNMR (CDCl3, 400 Hz, delta/ppm) 7.47 (dt, J1 = 8.4 Hz, J2 = 2 Hz, 2H,), 7.21 (d, J= 8.4 Hz, 2H), 4.45 (s, 2H), 4.32 (s, 2H), 4.24 (t, J = 1.6 Hz, 2H), 4.17 (t, J =1.6 Hz, 2H), 4.12 (s, 5H); 13C NMR (CDCl3, 100 Hz, delta/ppm) 137.6, 131.4,129.3, 121.3, 83.1, 70.8, 69.4, 68.6, 68.5, 68.4.

1273-86-5, 1273-86-5 Ferrocenemethanol 10856885, airon-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Meng, Zhengong; Wei, Zhuoxun; Fu, Kuo; Lv, Lei; Yu, Zhen-Qiang; Wong, Wai-Yeung; Journal of Organometallic Chemistry; vol. 892; (2019); p. 83 – 88;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on Ferrocenemethanol

With the complex challenges of chemical substances, we look forward to future research findings about 1273-86-5,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Ferrocenemethanol, and cas is 1273-86-5, its synthesis route is as follows.,1273-86-5

General procedure: A mixture of aryl alcohol (1 mmol) and [FemDMMerA]Y (100 mg) in solvent(5 mL) was refluxed in oil bath. After completion of the reaction as monitored byTLC, the reaction mixture was filtered to remove insoluble SILP catalyst.Evaporation of solvent in vacuuo followed by column chromatography over silicagel using petroleum ether/ethyl acetate (95:5 v/v) afforded pure aldehydes.

With the complex challenges of chemical substances, we look forward to future research findings about 1273-86-5,belong iron-catalyst compound

Reference£º
Article; Kurane, Rajanikant; Bansode, Prakash; Khanapure, Sharanabasappa; Salunkhe, Rajashri; Rashinkar, Gajanan; Research on Chemical Intermediates; vol. 42; 12; (2016); p. 7807 – 7821;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 1273-86-5

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenemethanol,belong iron-catalyst compound

As a common heterocyclic compound, it belong iron-catalyst compound,Ferrocenemethanol,1273-86-5,Molecular formula: C11H3FeO,mainly used in chemical industry, its synthesis route is as follows.,1273-86-5

General procedure: 1.1 mmol of triethylamine was added to a stirred mixture of 1.0 mmol of metallocene alcohol (7, 8, 12) or 0.45 mmol of ferrocene diol (10, 11) and 1.0 mmol of 4,5-dichloroisothiazole- or 5-arylisoxazole-3-carbonyl chloride in 50 mL of diethyl ether at 20-23C. The reaction mixture was stirred at that temperature during 24 h. The precipitated triethylamine hydrochloride was filtered off and washed with diethyl ether (5 ¡Á 10 mL). The filtrate was washed with 10 % aqueous NaCl and 5 % aqueous NaHCO3. The solvent was removed, and the residue was recrystallized from a benzene-hexane (2 : 1) mixture (14, 15, 19, and 20) or from hexane (16,17, 21, and 22). 3,4,4-Trichloro-1-cymantrenylbut-3-en-1-yl 4,5-dichloroisothiazole-3-carboxylate 18 was obtained as a viscous oil and was used without further purification.

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenemethanol,belong iron-catalyst compound

Reference£º
Article; Potkin; Dikusar; Kletskov; Petkevich; Semenova; Kolesnik; Zvereva; Zhukovskaya; Rosentsveig; Levkovskaya; Zolotar; Russian Journal of General Chemistry; vol. 86; 2; (2016); p. 338 – 343; Zh. Obshch. Khim.; vol. 86; 2; (2016); p. 338 – 343,6;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Brief introduction of 1273-86-5

1273-86-5, The synthetic route of 1273-86-5 has been constantly updated, and we look forward to future research findings.

1273-86-5, Ferrocenemethanol is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: Under an N2 atmosphere, a mixture of secondary alcohol (0.5 mmol), primary alcohol (0.6 mmol), 1a (5 mol %), NaOH (0.1 mmol), 4 A molecular sieve (0.6 g), and toluene (1.5 mL) was added into a 25 mL Schlenk tube equipped with a stirring bar. The mixture was heated to 120 C under a slow and steady N2 flow for 24 h. After cooling to ambient temperature, 6 mL water was added and the aqueous solution extracted with ethyl acetate (3 x 5 mL). The combined extracts were dried over anhydrous Na2SO4, and concentrated under reduced pressure. The crude product purified on a short flash chromatography column.

1273-86-5, The synthetic route of 1273-86-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Zhang, Shi-Qi; Guo, Bin; Xu, Ze; Li, Hong-Xi; Li, Hai-Yan; Lang, Jian-Ping; Tetrahedron; vol. 75; 47; (2019);,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion