New learning discoveries about 1271-51-8

1271-51-8, As the paragraph descriping shows that 1271-51-8 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1271-51-8,Vinylferrocene,as a common compound, the synthetic route is as follows.

General procedure: In a 25-mL round-bottomed flask, a mixture of aryl iodide (5 mmol), alkene (6 mmol), and base (5.6 mmol) was placed in 4 mL of DMF, then a solution of the complex 3 (0.005 mol percent) in 1 mL of DMF was added. The reaction mixture was refluxed for the time stated in Tables 3 and 4 at 140 ¡ãC. The reaction mixture was poured into water (20 mL) and extracted with ether or hexane (2¡Á30 mL). The combined organic layers were dried over anhydrous sodium sulfate. After the removal of the solvent in vacuo, the resulting crude was purified by column chromatography on silica gel (hexane/ethyl acetate) to give the corresponding cross-coupling product (the purified product was identified by means of determination of mp and by 1H and 13C NMR, the data obtained are consistent with literature).26 The entire flasks used in the each coupling reaction were meticulously cleaned with aqua regia to avoid the presence of unseen palladium catalyst.

1271-51-8, As the paragraph descriping shows that 1271-51-8 is playing an increasingly important role.

Reference£º
Article; Sua?rez-Meneses, Jesu?s V.; Bonilla-Reyes, Edgar; Ble?-Gonza?lez, Ever A.; Ortega-Alfaro, M. Carmen; Toscano, Rube?n Alfredo; Cordero-Vargas, Alejandro; Lo?pez-Corte?s, Jose? G.; Tetrahedron; vol. 70; 7; (2014); p. 1422 – 1430;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 1271-51-8

1271-51-8, 1271-51-8 Vinylferrocene 16211828, airon-catalyst compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1271-51-8,Vinylferrocene,as a common compound, the synthetic route is as follows.

Add 1t (0.2 mmol, 42mg) of vinyl ferrocene, 2a (0.2 mmol, 29 muL), toluene (1 mL), and Cp to the reaction tube in this order.2ZrH2(0.01 mmol, 2.3 mg). Stir the reaction at room temperature under a nitrogen (1 atm) atmosphere.GC detection until the reaction is complete.Filter through celite, spin dry the solvent under reduced pressure, and purify the residue by silica gel column chromatography. Use petroleum ether: ethyl acetate (40 mL: 1 mL) as the eluent to obtain ferrocene vinyl boric acid as a yellow oil Pinacol ester 3t (63mg, 80%).

1271-51-8, 1271-51-8 Vinylferrocene 16211828, airon-catalyst compound, is more and more widely used in various fields.

Reference£º
Patent; Chinese Academy Of Sciences Lanzhou Chemical Physics Institute; Wu Lipeng; Shi Xiaonan; (17 pag.)CN110483561; (2019); A;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 1271-51-8

1271-51-8, The synthetic route of 1271-51-8 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1271-51-8,Vinylferrocene,as a common compound, the synthetic route is as follows.

General procedure: A deoxygenated mixture of vinylferrocene (170mg, 0.80mmol), K2CO3 (1.50g, 11mmol), tetrabutylammonium bromide (1.19g, 3.70mmol), bromochromone (0.66mmol) and Pd(OAc)2 (20mg, 0.09mmol) in DMF (23ml) was heated at 95¡ãC for 19h. After cooling to r. t. the reaction mixture was evaporated to dryness. Solid residue was dissolved in chloroform and extracted several times with water. The organic phase was dried with MgSO4, filtered and the solvent was removed from the filtrate in vacuo. The residue was subjected to chromatography on SiO2 (eluent: CHCl3/methanol, 50:2). Finally the analytically pure products were obtained after recrystallization from chloroform/n-hexane mixture.

1271-51-8, The synthetic route of 1271-51-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Kowalski, Konrad; Koceva-Chy, Aneta; Szczupak, Lukasz; Hikisz, Pawel; Bernasin?ska, Joanna; Rajnisz, Aleksandra; Solecka, Jolanta; Therrien, Bruno; Journal of Organometallic Chemistry; vol. 741-742; 1; (2013); p. 153 – 161;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of 1271-51-8

With the complex challenges of chemical substances, we look forward to future research findings about Vinylferrocene

Name is Vinylferrocene, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 1271-51-8, its synthesis route is as follows.,1271-51-8

General procedure: As shown as the synthetic protocol A in Scheme 2, compounds 1-11 were synthesized following literature description [16] with m-methoxyphenol, p-methoxyphenol, resorcinol, and hydroquinone as reagents. One hydroxyl group in resorcinol and hydroquinone was protected by tert-butyldimethylsilyl chloride. Then, 17 mL of dry CHCl3 solution containing excess PhtNSCl was added dropwisely to 8 mL of dry CHCl3 solution containing monoprotected hydroquinone or resorcinol and stirred for 16 h at 0 ¡ãC until phenols cannot be detected by thin layer chromatography (TLC). The mixture was diluted with CH2Cl2 and washed by saturated NaHCO3 and water. The organic phase was dried over anhydrous Na2SO4, and the solvent was removed under vacuum. The residue was purified by column chromatography with CH2Cl2 as the eluent to afford thiophthalimides as colorless solid. The following cycloaddition reactions were carried out in dry CHCl3 solution of thiophthalimides (~ 0.1 M) and styrenes (2 equiv.) or vinyl ferrocene (2 equiv.) and freshly distilled (C2H5)3N (2 equiv.) at 60 ¡ãC. The reaction was finished with thiophthalimides not detected by TLC. Then, the solvent was evaporated under vacuum pressure, and the residual solid was purified with column chromatography to afford silylated adducts. The desilylation operation was performed in dry tetrahydrofuran (THF) solution containing 0.04 M aforementioned adducts at 0 ¡ãC, to which a solution of (n-C4H9)4NF*3H2O in THF (1 equiv. for each protective group) was added. The reaction was finished with the reagent not detected by TLC, and then the mixture was diluted with ethyl acetate and washed with saturated NH4Cl and water. The organic layer was dried over anhydrous Na2SO4, and the solvent was evaporated under vacuum pressure. The residue was purified with column chromatography to afford thiaflavans.

With the complex challenges of chemical substances, we look forward to future research findings about Vinylferrocene

Reference£º
Article; Lai, Hai-Wang; Liu, Zai-Qun; European Journal of Medicinal Chemistry; vol. 81; (2014); p. 227 – 236;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 1271-51-8

1271-51-8, 1271-51-8 Vinylferrocene 16211828, airon-catalyst compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1271-51-8,Vinylferrocene,as a common compound, the synthetic route is as follows.

Under argon, into a dried reactor were added successively vinyl ferrocene (1mol, 212g), (R ) -3,3′-bis (3,5-dimethylphenyl) -1,1 ‘ – binaphthol phosphonate (0.01mol, 5.6g) and 1L of toluene, followed by addition of di-tert-butylphosphine (1mol, 147g), heated to 60 deg.] C for 12 hours, then cooled cooling, water was added dropwise to the system, and then liquid separation, the organic layer was dried over anhydrous magnesium sulfate, filtered, and the solvent evaporated under reduced pressure to give a yellow solid which was recrystallized from dichloromethane and methanol to give (R) -1- ferrocenyl ethyl-di-tert-butylphosphine 347g yield 97percent, ee value of 99.5percent.

1271-51-8, 1271-51-8 Vinylferrocene 16211828, airon-catalyst compound, is more and more widely used in various fields.

Reference£º
Patent; Institute of Chemistry, Henan Academy of Sciences; Chen, Hui; Yang, Ruina; Yang, Zhenqiang; Sun, Minqing; Duan, Zheng; Wang, Congyang; (5 pag.)CN105859800; (2016); A;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 1271-51-8

With the complex challenges of chemical substances, we look forward to future research findings about Vinylferrocene

It is a common heterocyclic compound, the iron-catalyst compound, Vinylferrocene, cas is 1271-51-8 its synthesis route is as follows.,1271-51-8

General procedure: A deoxygenated mixture of vinylferrocene (170mg, 0.80mmol), K2CO3 (1.50g, 11mmol), tetrabutylammonium bromide (1.19g, 3.70mmol), bromochromone (0.66mmol) and Pd(OAc)2 (20mg, 0.09mmol) in DMF (23ml) was heated at 95¡ãC for 19h. After cooling to r. t. the reaction mixture was evaporated to dryness. Solid residue was dissolved in chloroform and extracted several times with water. The organic phase was dried with MgSO4, filtered and the solvent was removed from the filtrate in vacuo. The residue was subjected to chromatography on SiO2 (eluent: CHCl3/methanol, 50:2). Finally the analytically pure products were obtained after recrystallization from chloroform/n-hexane mixture.

With the complex challenges of chemical substances, we look forward to future research findings about Vinylferrocene

Reference£º
Article; Kowalski, Konrad; Koceva-Chy, Aneta; Szczupak, Lukasz; Hikisz, Pawel; Bernasin?ska, Joanna; Rajnisz, Aleksandra; Solecka, Jolanta; Therrien, Bruno; Journal of Organometallic Chemistry; vol. 741-742; 1; (2013); p. 153 – 161;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 1271-51-8

With the complex challenges of chemical substances, we look forward to future research findings about Vinylferrocene

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Vinylferrocene, and cas is 1271-51-8, its synthesis route is as follows.,1271-51-8

General procedure: A mixture of 4-bromo-7-(piperidin-1-yl)benzo[c][1,2,5]thiadiazole (2a) (0.298 g, 1 mmol), 4-vinylpyridine (0.115 g, 1.1 mmol), Pd(OAc)2 (5.0 mg, 0.022 mmol), NaOAc (0.82 g, 10 mmol), n-Bu4NBr (0.065 g, 0.2 mmol) and N,N-dimethylformamide (10 mL) was heated at 100 ¡ãC for 24 h under nitrogen atmosphere. After cooling, the reaction was quenched by adding excess water. The precipitate formed was filtered, washed with water, dissolved in dichloromethane, and dried over anhydrous sodium sulfate. After evaporation of the volatiles, the residue was purified by column chromatography on silica gel, using a hexanes/dichloromethane mixture (2:3) as eluant to obtain the title compound 3a. 4.2.6 4-((E)-2-Ferocenylvinyl)-7-((E)-2-(pyridin-4-yl)vinyl)benzo[c][1,2,5]thiadiazole (6c) Compound 6c (0.277 g, 73percent) was prepared as dark solid by following a procedure similar to that described above for 6a by using vinylferrocene. Rf (70percent CH2Cl2/hexanes) 0.39; mp 184-186 ¡ãC; numax (KBr film) 2924, 2847, 1622, 1380, 1100, 965, 810 cm-1; deltaH (500.13 MHz, CDCl3) 4.19 (5H, s, Cp), 4.40 (2H, s, Cp), 4.62 (2H, s, Cp), 7.22 (1H, s), 7.50 (2H, s), 7.61 (1H, buried d, vinyl), 7.69 (1H, d, J=6.0 Hz), 7.75 (1H, d, J=16.0 Hz, vinyl), 7.84 (1H, d, J=16.0 Hz, vinyl), 7.99 (1H, d, J=16.0 Hz, vinyl), 8.6 (2H, br s, pyridine); deltaC (125.77 MHz, CDCl3) 67.5, 69.5, 69.9, 83.0, 121.0, 121.5, 125.2, 126.8, 129.1, 129.2, 129.8, 131.2, 134.0, 145.0, 150.2, 153.7, 153.9; HRMS (ESI): MH+, found 449.0625. C25H19FeN3S requires 449.0649.

With the complex challenges of chemical substances, we look forward to future research findings about Vinylferrocene

Reference£º
Article; Prasad Bolisetty; Li, Chun-Ting; Thomas Justin; Bodedla, Govardhana Babu; Ho, Kuo-Chuan; Tetrahedron; vol. 71; 24; (2015); p. 4203 – 4212;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of Vinylferrocene

With the synthetic route has been constantly updated, we look forward to future research findings about Vinylferrocene,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO300,mainly used in chemical industry, its synthesis route is as follows.,1271-51-8

A mixture of vinylferrocene (1 mmol), K2CO3 (2.5or 5 mmol), tetrabutylammonium tetrafluoroborat (2.5 or 5 mmol),the given amount of appropriate bromine-substituted compoundand catalytic amount of Pd(OAC)2 in 10 ml DMF was stirred at 80 ¡ãCunder argon atmosphere overnight. After the completion of thereaction, the cooled mixture was filtered, diluted with CH2Cl2(50 ml) and washed with H2O (3 x 50 ml). The organic phase was dried over Na2SO4, filtered and the solvent was removed under thereduce pressure. The crude products were purified by columnchromatography on silica gel with hexane/EtOAC as eluent. Specificdetails for each compound are given below.

With the synthetic route has been constantly updated, we look forward to future research findings about Vinylferrocene,belong iron-catalyst compound

Reference£º
Article; Teimuri-Mofrad, Reza; Rahimpour, Keshvar; Ghadari, Rahim; Journal of Organometallic Chemistry; vol. 846; (2017); p. 397 – 406;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 1271-51-8

1271-51-8, 1271-51-8 Vinylferrocene 16211828, airon-catalyst compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1271-51-8,Vinylferrocene,as a common compound, the synthetic route is as follows.

A solution of 4H-pyrane derivative (4, 7a and7b) (1 mmol), 4-(2-ferrocenylvinyl)benzaldehyde (2 mmol) andpiperidine (1 mL) in dry acetonitrile (10 mL) was refluxed for 1 hunder argon atmosphere. The reaction was controlled with TLCmethod by monitoring the 4-(2-ferrocenylvinyl) benzaldehyde inthe solution of reaction. After the completion of the reaction, thesolution was cooled to room temperature and the product waspurified using column chromatography over silica gel and hexane/EtOAC as eluent. Further purification was performed by recrystallizationfrom hexane and EtOAc to give corresponding compoundas a pure solid. Specific details for each compound are given belowand spectral data in each case is similar to reported one in above.2,6-Bis [4-(2-ferrocenylvinyl)styryl]-4H-pyran-4-one (6):from 0.1 g (0.32 mmol) 4-(2-Ferrocenylvinyl) benzaldehyde and0.02 g (0.11 mmol) 2, 6-Methyl-4H-pyran-4-one, 0.08 g (0.13 mmol)orange solid was obtained in 75percent yield.

1271-51-8, 1271-51-8 Vinylferrocene 16211828, airon-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Teimuri-Mofrad, Reza; Rahimpour, Keshvar; Ghadari, Rahim; Journal of Organometallic Chemistry; vol. 846; (2017); p. 397 – 406;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of Vinylferrocene

With the complex challenges of chemical substances, we look forward to future research findings about Vinylferrocene,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO105,mainly used in chemical industry, its synthesis route is as follows.,1271-51-8

A deoxygenated mixture of vinylferrocene (636 mg, 3.0 mmol), K2CO3 (5.52 g, 40 mmol), tetrabutylammonium bromide (4.51 g, 14 mmol), pseudo-para dibromo-[2.2]-paracyclophane [61] (366.1 mg, 1.0 mmol) and Pd(OAc)2 (67 mg, 0.3 mmol) in DMF (43 mL) was heated at 95 ¡ãC for 20 h. After cooling to r.t. the dark reaction mixture was filtered, diluted with CH2Cl2 (~40 mL) and washed with brine (4 x 30 mL). The organic phase was dried with MgSO4, filtered and the solvent was removed from the filtrate in vacuo. The residuewas subjected to chromatography on deactivated Al2O3 (n-hexane). Two fractions containing productswere collected: a first one containing 3 (270 mg, 31percent) and a second one containing 2. Slightly impure 2was again subjected to columnchromatography on silica gel with CHCl3 followed by crystallization from a CHCl3/MeOH mixture. 2 was obtained as an orange solid in a yield of 245 mg, 39percent.

With the complex challenges of chemical substances, we look forward to future research findings about Vinylferrocene,belong iron-catalyst compound

Reference£º
Short Survey; Mu?cke, Philipp; Winter, Rainer F.; Kowalski, Konrad; Journal of Organometallic Chemistry; vol. 735; (2013); p. 10 – 14;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion