Simple exploration of 1271-48-3

Keep reading other articles of 1271-48-3! Don’t worry, you don’t need a PhD in chemistry to understand the explanations! Synthetic Route of 1271-48-3

Synthetic Route of 1271-48-3, Researchers are common within chemical engineering and are often tasked with creating and developing new chemical techniques, frequently combining other advanced and emerging scientific areas.1271-48-3, Name is 1,1′-Ferrocenedicarboxaldehyde, molecular weight is 242.0516. belongs to iron-catalyst compound, In an Article,once mentioned of 1271-48-3

The synthesis of heterocyclic systems incorporating more than one ferrocene unit was shown to be a facile and convenient route for the synthesis of new ferrocene-heterocycles. Hydrazide 2 was prepared and cyclized to oxadiazole, triazole, and pyrazole using the procedures described in this context with good yields. A pyrazolone derivative could not be obtained and instead a hydrazone derivative 17 was isolated. Hydrazide 2 was condensed with aromatic aldehydes and ferrocene-1,1?-dicarbaldehyde derivatives to give the corresponding hydrazones 11a-c and dihydrazones 12, 14 and 18 in high yields. Cyclic voltammetry (CV) of the selected ferrocene-heterocycles 8 and 9 was studied comparing with the parent ferrocene and acetylferrocene. The CV of the compound 8 revealed an additional, quasireversible, one-electron oxidation wave at 849 mV, corresponding to the second ferrocene unit connected to the oxadiazole ring through the SCH2CO spacer.

Keep reading other articles of 1271-48-3! Don’t worry, you don’t need a PhD in chemistry to understand the explanations! Synthetic Route of 1271-48-3

Reference:
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion