Reference of 1271-48-3, A catalyst don’t appear in the overall stoichiometry of the reaction it catalyzes, but it must appear in at least one of the elementary reactions in the mechanism for the catalyzed reaction. 1271-48-3, Name is 1,1′-Ferrocenedicarboxaldehyde, molecular formula is C12H10FeO2. In a Article£¬once mentioned of 1271-48-3
Synthesis, reactivity and spectroscopy of ferrocene-functionalised porphyrins, with a conjugated connection between the ferrocene and the porphyrin core
Several new ferrocene-functionalised porphyrins and a ruthenocene-functionalised porphyrin have been synthesized and studied using electrochemistry, electronic absorbance and resonance Raman spectroelectrochemical techniques. The porphyrin and ferrocene are observed to have limited effect on each other with the properties of the porphyrin dominating the spectroscopy of these molecules. The Royal Society of Chemistry 1999.
Synthesis, reactivity and spectroscopy of ferrocene-functionalised porphyrins, with a conjugated connection between the ferrocene and the porphyrin core
Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Reference of 1271-48-3. In my other articles, you can also check out more blogs about 1271-48-3
Reference£º
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion