Electric Literature of 1293-65-8, Because a catalyst decreases the height of the energy barrier, its presence increases the reaction rates of both the forward and the reverse reactions by the same amount.1293-65-8, Name is 1,1′-Dibromoferrocene, molecular formula is C10Br2Fe. In a article£¬once mentioned of 1293-65-8
Coordination chemistry of tetra- and tridentate ferrocenyl polyphosphines: An unprecedented [1,1?-heteroannular and 2,3-homoannular]-phosphorus- bonding framework in a metallocene dinuclear coordination complex
Palladium(II) and nickel(II) halide complexes of the ferrocenyl polyphosphines 1,1?,2,3-tetrakis(diphenylphosphino)ferrocene (1), and 1,1?,2-tris(diphenylphosphino)-4-tert-butylferrocene (5) were prepared and characterized by multinuclear NMR. The metallo-ligand 1, the palladium [Pd 2Cl4(1)] (3b) and nickel [NiCl2(5)] (6) coordination complexes were additionally characterized by X-ray diffraction crystallography. The behavior of 1 toward coordination to nickel and palladium was surprisingly different because the coordination of a second metal center after the initial 1,2-phosphorus-bonding of nickel was markedly difficult. The preference of nickel for 1,2-P coordination on 1,1?-bonding was confirmed by the exclusive formation of 6 from 5. The changes noted between the solid state structure of the ligand 1 and the structure obtained for the dinuclear palladium complex 3b reveal the rotational flexibility of this tetraphosphine. This flexibility is at the origin of the unique framework for a metallocenic dinuclear metal complex in which both coexist a 1,1?-heteroannular chelating P-bonding and a 2,3-homoannular chelating P-bonding with two palladium centers. Some reported specimens of ferrocenyl polyphosphines of constrained geometry have previously revealed that phosphorus lone pair overlap can lead to very intense “through-space” 31P31P nuclear spin-spin coupling constants (JPP) (J. Am. Chem. Soc. 2004, 126 (35), 11077-11087] in solution phase. In these cases, an intemuclear distance between heteroannular phosphorus atoms below 4.9 A, with an adequate orientation of the lone-pairs in the solid state and in solution, was a necessary parameter. The flexibility of the new polyphosphines 1 and 5 does not allow that spatial proximity (intemuclear distances between heteroannular phosphorus above 5.2 A in the solid state); accordingly the expected through-space nuclear spin-spin coupling constants were not detected in any of their coordination complexes nor in 1.
Coordination chemistry of tetra- and tridentate ferrocenyl polyphosphines: An unprecedented [1,1?-heteroannular and 2,3-homoannular]-phosphorus- bonding framework in a metallocene dinuclear coordination complex
A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 1293-65-8
Reference£º
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion